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An electric hertzian dipole is immersed in a cold homogeneous magnetoplasma and it
is required to calculate the electromagnetic field at a moderate or great distance.
Known methods of doing this are reviewed and extended. They all, in effect, express
the field as an integral representing an angular spectrum of plane waves or of waves
with conical wavefronts. The integral is evaluated by the method of steepest descents
and extensions of it. Results are then presented of some calculations for various
plasmas containing one or more species of positive ion.

A study is made of the dependence of the radiated field, and of its Poynting vector,
on direction and on frequency, when the source dipole is parallel to the superimposed
magnetic field. There are three conditions where signals of large or very large amplitude
can occur, namely (@) enhancement for directions very close to the direction of the
superimposed magnetic field, (b) resonance cones, in which the signal is large for
directions where the refractive index is very large, and (¢) Storey cones and reversed
Storey cones, which may be thought of as conical caustic surfaces where two rays have
moved to coalescence and give constructive interference. These three features occur
only in certain limited frequency ranges.

The classification of these results is complicated and necessitates discussion of the
transition frequencies of the plasma. For a plasma with more than one species of
positive ion the phenomenon of crossover occurs, and its effect on the three types of
signal enhancement is discussed.

1. INTRODUCTION

The study of the electromagnetic field radiated by an electric hertzian dipole in a cold homo-
geneous magnetoplasma is important for some radio propagation problems in the ionosphere
and magnetosphere and for some problems in laboratory plasmas. Methods of calculating it
have been described by Bunkin (1957); Kogelnik (1960); Arbel & Felsen (1963); Mittra &
Deschamps (1963); Motz & Kogelnik (1963); Clemmow (1963, 1966); Al’'pert & Moiseyev
(1980). All these methods in effect express the field as an integral representing an angular
spectrum of. plane waves, or, in some cases, of waves with conical wavefronts. The integral is then
evaluated by the method of steepest descents and extensions of it. These are approximate methods
whose accuracy is greatest at large distances, that is in the ‘far field’. The results are complicated
because of the anisotropy of the plasma. They vary greatly, depending on the type of plasma
studied, and on the frequency.

The purpose of this paper is to review and summarize these methods so as to give the essential
formulae, and then to present the results of some calculations for various plasmas in which one
or more species of positive ion plays an essential part. Most of the results are for a fully ionized
proton plasma, but some results for a plasma with three species of positive ion are also included.
The calculations were done partly in Moscow, U.S.S.R., and partly in Cambridge, U.K. Where
the results overlapped there was satisfactory agreement.

Some results of this kind of calculation for a plasma in which only electrons are effective were
given by Arbel & Felsen (1953). Al’'pert & Moiseyev (1980) drew attention to three features of
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DIPOLE RADIATION IN MAGNETOPLASMA 505

the radiated field which can give rise to signals of large amplitude. These are () an enhancement
of the field for directions very close to the direction of the superimposed magnetic field, (5) reson-
ance cones where the signal is large in a narrow range of angle for directions where the refractive
index of the principal contributing wave is very large, and (¢) Storey cones and reversed Storey
cones, which may be thought of as conical caustic surfaces where two rays, equivalently two
saddle points of the integrand, have moved to coalescence; in a narrow range of angle near these
cones the signal has a maximum, often large, because of constructive interference of the two rays.
These three features occur only in certain limited frequency ranges. They are discussed in detail
in later sections.

In §2 we set out the notation used and summarize the properties of plane waves with a
specified direction of the wave normal in a cold homogeneous magnetoplasma. These include
the dispersion relation, the refractive indices and the polarizations. They are expressed in terms
of the three principal axis elements of the electric permittivity tensor. The main problem is
stated in §3. Here the six components of the electromagnetic field are expressed as integrals,
when the source is an electric hertzian dipole parallel to the constant magnetic field. The results
in this paper apply entirely to this type of source (but see Appendix B).

When the receiver is far enough from the source, the integrals are suitable for evaluation by
steepest descents. A method for finding the saddle points, for a given ray direction }, is described
in §4. For a saddle point that is far enough from other saddle points and from singularities, the
first order formula for steepest descents may be used, and its limitations are reviewed. These
techniques are well known, but the present problem has some special points that need discussion.
When the refractive index associated with a saddle point approaches infinity, this is called
resonance. In §5 it is shown that in many practical cases, when collisions are allowed for, the
first order steepest descents formula can still be used. In §6 we deal with the case where two
saddle points are close together. This occurs near a Storey cone or reversed Storey cone. It is
known that the integral here may be expressed in terms of an Airy integral function and its
derivative. Formulae suitable for the present problem are given and their properties are
illustrated.

In §7 the fields very close to the axis of the source dipole are considered. It is found (Al’pert &
Moiseyev 1980) that for certain forms of the refractive index surface, an enhancement of the field
can occur near the axis, and it is dealt with by a modification of the method of steepest descents.
Some illustrative results are given and a further possible refinement of the method is described
though not used in this paper.

In §8 we describe the method used to classify the results of the later sections. It deals with the
possibly controversial question of the meaning to be attached to the terms ‘ordinary’ and ‘extra-
ordinary’, and then describes the use of #(6) curves as a quick and clear way of specifying the
topology of the refractive index surfaces. The features of these curves change when the frequency
passes through certain transition frequencies which are associated with boundary lines in the
C.M.A. diagram. These frequencies are listed in §9 and their properties are summarized.

In §10 we present results for a fully ionized cold proton plasma. It illustrates the dependence
of the signal on the ray direction 4. The frequency dependence of the enhanced signals for a
resonance cone, for Storey cones and reversed Storey cones, and for fields near the axis of the
source dipole is then studied. In § 11 results are given for a plasma with three species of positive
ions. The main new feature here is the appearance of crossover frequencies, which are not present
when there is only one species of positive ion. This section is mainly devoted to a study of the
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506 YA. L. AL’PERT AND OTHERS

behaviour near crossover, and its effect on resonance cones, Storey cones and axial field
enhancement.

In Appendix A a way for dealing with collisions between species is given when allowance is
made for the relative velocity of the two colliding species. It is based on a method of Al’pert
(19805). In Appendix B we present the formulae for the fields contributed by one saddle point
when the source is an electric hertzian dipole perpendicular to the constant magnetic field.
Some of their properties have been studied by Stott (1982).

Notation

The following notation is used. The integer subscript z = 1,2,3... is used to number the
species of positive ion in order of increasing mass.

—e charge on electron

m, M, mass of electron and of th species of ion

B superimpcsed magnetic field, magnitude B

w = 2nf angular frequency of wave

N concentration of electrons

wy = (2N /eym)t angular plasma frequency for electrons (for gaussian units, €, = 1/(4n)

wy = eB/m, 2, = eB/M; angular cyclotron frequency for electrons and for ith species of ion
respectively

Ve, V; effective collision frequency for electrons and for ith species of ion,
respectively, (but see Appendix A)

X i [w?

Ye> Yz wH/w3 'Qi/w

U, U, 1—-ivy/w, 1 —iv;/w

C; ratio of concentration of ith species of ion to that of electrons

7; ratio of mass of electron to mass of zth species of ion.

In the formulae of this paper the various angular frequencies (in rads™!) w, 2 are used with
appropriate subscripts. But in the presentation of the results, including the figure captions the
actual frequencies £, F (in Hz) are used. The subscripts used on f, F are exactly the same as those
used on the corresponding w, 2.

2. PROPERTIES OF THE PLASMA

We are concerned with a cold, homogeneous, non-magnetic magnetoplasma. Its properties
are conveniently given by its electric permittivity tensor € which is independent of position. We
use both cartesian coordinates ¥, y, z and cylindrical polar coordinates p, ¢, z. The superimposed
magnetic field B is parallel to the z axis. The elements of € in cartesian coordinates are

€ €zy O
€=|€y & O (1)
0 0 ¢,
and from the symmetry of the plasma it follows that
€xx = Eyy = €pp = €4¢ 1 (2)
€ry = —Eyg = €pyp = _€¢p‘J
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DIPOLE RADIATION IN MAGNETOPLASMA 507

It is convenient to diagonalize € by the unitary transformation (Westfold 1949; Budden 1961).

1 i 0
enp=UeU, U=2%1 —-i 0 (3)
0o o 2

whence €p, is 3 x 3 diagonal with elements ¢, ¢_, €5, given by

€L = €pp—1€sy, €_ = €16y, €3 = €,. (4)
The elements of e, are

e- = 1=-X/(Ue+Y) - X C;1; X/(U; - 1)),
¢, = 1= X/(Uy—¥.) - 5 Cyr X/ (Ui + Yo, (5)
€3 =1-X/U,~ X C;r; X/ U,

This is based on a simple treatment of collisions in which it is assumed that each species of ion
collides with particles whose average velocity is zero. A better treatment that allows for the
relative velocity of colliding particles has been given by Al’pert (19805). It leads to more compli-
cated formulae for e_, €, €; given in Appendix A, and to some new properties of the refractive
indices.

The dispersion relation of the plasma gives the refractive indices n for a plane wave whose
wave normal makes an angle 6 with the z axis. The refractive index may be thought of as a
vector n with cartesian components

n, = nsinfcosp, n,=nsinfsing, n,=mcosb, (6)

which define a refractive index space. In this space the vector n always goes through the origin,
and it has cylindrical components '

n,0,n, with n, = (n2+n2)t = nsiné. (7)
One form of the dispersion relation for the plasma is
€3 ng + {n,% (63 + ea::c) - 263 e:cz} ng + €rz n?) - (€3€wm + €, 6‘_) n% + € € _€3= 0. (8)
This is a quadratic either for 72 or for #2, with the solutions
ni’ = %[63 €rzt € €6_— (63 + ea'a:) ng * {(ecccc - 63) 23
+ 2(363::563 - €gm€§ TE€LE_€pp— €+€——€3) ng + (eacxe?. - €+€—)2}%] /eccz (9)
ng = €pp %(exz + 63) n?)/e?. t %{(ezm - 63)2 ﬂ% + (€+ - 6‘_)26‘3(63 - ni)}&/e:& (10)
Another form of the dispersion relation is
nt(€,, sin? 0 + e3cos? 0) —n*e, e_sin%0 +¢€,,€5(1 +cos?0)} +e,e_eg = 0. (11)
Let the discriminant of this quadratic for n% be
S = +{sin*0(e, e_—e,,€5)%+cos20e3(e, —e )2} (12)

Then the solutions of (11) are
g2 o Ex6= sin? 6 + €., €5(1 + cos?0) + S.

2(€....sin%2 6 + e, cos2 0)

(13)
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508 YA.L. AL’PERT AND OTHERS

The polarization of the wave is defined by
p = E4[E, (14)

where £, E, are components of the electric field of the wave; £ is in the plane ¢ = constant,
and perpendicular to the wave normal; E, is perpendicular to the plane ¢ = constant. Then

{e,e_—3es(e,+e_)}sin20+ S
es(e_—e€,)cosO )

ip= (15)

The sign of S determines whether the wave is ordinary or extraordinary. This is discussed in §8.
The two values of n (13), with positive real parts are used, and they are functions of 6 and w.
When the notation n(f) is used it is here implied that  is held constant, and similarly zn(w)
implies that 6 is held constant.
Let
nz(ewac"'es) +€pp€3—€L6_ = D. (16)

Then, since n +nZ = n?, it can be shown from (8) that

m, = —ey(n?—¢_) (n*—e,)/D, (17)
ng = (€zon® —6,6_) (n®—ey)/D. (18)

From (8) it can further be shown that

2€mz n;z) + (Ga:m + 63) ng —€pz€3— €€
ni(eac:c + 63) - 2(€wx - ng) €3

dn, o

dn, " (19)

=~
nz

These formulae are needed later.

For the above plasma properties, several different notations are in use and some difference
between the notation used here and in previous papers is unavoidable. The following table
shows the symbols used in the papers most closely related to this.

Al'pert & Moiseyev Budden & Stott Stix

present paper (1980) (1980) (1962)
€_ € 1€, € L
€4 €,— €y € R
€ = €, € € P
€pp = '% (€+ + 6—) € S
€oy = }i(€,—¢€) —i€, iD
Nps Ny nyny, bas D2

3. STATEMENT OF THE PROBLEM AND SUMMARY OF THE FORMULAE

In the homogeneous plasma described in the previous section there is an oscillatory hertzian
electric dipole of moment Meivt at the origin O. The factor el“t will as usual be omitted in
future. Itis required to find the cartesian components £, E,, E, and H,, H,, H, of the resulting
electric and magnetic fields E, H respectively, at a given receiving point P. This may be assumed
to bein the plane y = 0, with ¥ > 0, since the plasma has rotational symmetry about the z axis.
The receiving point is at a distance 7 from O in a direction at an angle f to the z axis, so that

x=rsinf, y=0, z=rcosf. (20)
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DIPOLE RADIATION IN MAGNETOPLASMA 509

Since y = 0, the components £, £, are the same as £, £, and similarly for the components of H.
For the magnetic field it is convenient to use J# with components

H; = ZyH;, j=xy,z, (21)

where Zy = (puy/€,)? is the characteristic impedance of free space. Then the 5] have the same
dimensions as the E; and for a plane wave in vacuo |#| = | E|.

This problem can be solved when the source dipole has any of the three orientations parallel
to the x, y or z axes. The formulae can then be combined so as to give the fields from a dipole
with any orientation. The results in this paper apply only for a dipole parallel to the z axis, but the
formulae for the other two orientations are given as well, for completeness, in Appendix B.

Two different but essentially equivalent methods of solving this problem have been used. In
the first method Maxwell’s equations for the fields are written down including source terms which
are known spatial distributions of electric and magnetic currents. Magnetic currents (studied by
Motz & Kogelnik 1963) are not included here since they are not needed. The three dimensional
spatial Fourier transform of these equations is then taken. This gives six equations for the Fourier
transforms of the six field components E,, E,, E,, #,, #,, #, These equations are solved by
inverting the matrix of their coefficients, and the fields are then found by taking the inverse
Fourier transform.

Any one Fourier component of the fields can be thought of as a plane wave containing the
exponential factor that appears in (22) and (23) where £ means w/¢. It is convenient to use the
refractive index components (6) as the variables since that is the interpretation they are given
later. Let F be a typical one of the six field components and let G be its Fourier transform. Then

F(x,y,z) = Jff G(ng, n,, n,) exp{—ik(xn,+yn,+zn,)}dn, dn,dn,, (22)

G(ngn,,n,) = (k/2m) 3fffF (x,9, z) exp {ik(xn, +yn, + zn,) }dxdy dz. (23)

In all these integrals the limits are + co.

The function G, obtained from Maxwell’s equations as just described, contains as a factor the
Fourier transform & of the source current distribution. It also contains in the denominator a
factor equal to the left hand side of the dispersion relation (8). In simple cases, like those studied
here, & is either independent of 7,, or contains only integer powers of it. Then G is a rational
function of 7,, and the 7, integral in (22) can be done by closing the contour with a large semi-
circle in the lower half of the complex 7, plane. This gives contributions from two poles that occur
for two of the solutions (10), and that are associated with two waves with the same 7,, both
satisfying the dispersion relation (8). The n, and 7, integrations in (22) can be changed to use
n, and ¢ as the variables. Finally (20) is used and the integral (22) becomes

F(rsin $,0,rcos ) = t ?2 f:fjn G{n,,n{, g} exp{ —ikr(n,sin fcosg +nd cos #)}n,dn,dg,
(24)
where the two n{) are the appropriate solutions (10) and % is — 2ni times the residue of G at
each pole. The ¢ dependence of ¢ is usually simple so that the integral with respect to ¢ can be
expressed in terms of Bessel functions J,,.
This method can be used for any distribution of source currents. For example Motz & Kogelnik
(1963) have used it to study the radiation from a modulated ion beam.
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510 YA. L. AL’PERT AND OTHERS

The second method (Clemmow 1963, 1966) makes a more direct use of the idea of an angular
spectrum of plane waves. It can be used when the source currents are confined to a plane and
flow parallel to that plane, which we call the source plane. The two cartesian components of
these currents are then expressed as two dimensional Fourier integrals in the source plane.
Consider the Fourier component that has wavenumber components £,, £, in the source plane.
It gives rise, in the plasma on each side of this plane, to two plane waves travelling outwards.
For each of these waves, the six field components are in a fixed ratio which is known and deter-
mines the wave polarization and impedance. The amplitudes of the four waves are found from
the boundary conditions that apply at the source plane for the four field compenents parallel
to it. The contribution to the fields from the two contributing waves at any point on one side of
the source plane are thus found, and the complete fields are then found by taking the inverse
Fourier integral with respect to £; and £,.

The authors have used both these methods and have found that they agree. This provides a
useful check that the formulae used here are correct.

Results will now be given for the hertzian dipole source with three different orientations, as
described at the beginning of this section. The six field components are denoted by

EwaEyaEza‘%a%a% = -F;'s j= 13“'363 (25)

and the abbreviations
krsinfn, =& n® =nd+nd", (26)

are used. Then for a source dipole parallel to the z axis and for the receiving pointrsin 4, 0, 7 cos f:

F; = (Mk3/4me,) 3 fw {12 (€40 + €3) — 2(€4 — nd*) 5} g; exp (—ikrcos pn®) n2dn,, (27)
1=1,2Jo
where the six g; are

(6ze =7 I(E),  €ayhi(E), i(n,/eanl) ("V%egy—e e ) Io(€))

(28)
e (), (ere_—ne) (0P)I(E), in,e,Jo(E). )

When the source dipole is parallel to the x axis, or parallel to the y axis, the field components at
the same receiving point are again given by (27) but with different expressions for the g;. These
are not used in the calculations reported in this paper, but for completeness they are set out in
Appendix B.

The system of units used here is compatible with the SI, so that if A/ is in coulomb metres,
if k! and r are in metres and if ¢, has its SI value, then the fields F; are in volts per metre. The
factor Mk3/4ne, of (27) appears in all the formulae and will henceforth be omitted for brevity.
Thus we write

F,

7

= F; M3 [4me,. (29)

The %, are then the same as the formulae of Al’pert & Moiseyev (1980) who used unrationalized
gaussian units.

When the source dipole is parallel to the z axis, the system of fields has complete rotational
symmetry about the z axis. The fields (25) and (29) were therefore calculated for the plane
¢ = 0 and for the range 0 < # < in. In the discussions, however, it is often necessary to refer to
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DIPOLE RADIATION IN MAGNETOPLASMA 511

results with 8 outside this range. If the fields are known for # = f,, their values for other related
B’s are as shown in the following table:

i - n—p n+py

Ea: - Ex - Ea: Ea:
Ey - Ey Ey - Ey
E, E, -E, -E,

The components of # with the same subscripts are related in the same way. The components
E,, o, E;, #; are the same for all four of the cases shown. When the source dipole is not parallel
to the z axis, the ¢ dependence of the fields, and the symmetry properties, are more complicated
but they are not needed here.

4. EVALUATION OF THE INTEGRALS FOR ISOLATED SADDLE POINTS

For the integral (27) the integrand is oscillatory because of the exponential factor and of the
Bessel functions in (28). Thus it is not easy to evaluate the integral exactly even when a computer
is available. But an exact evaluation would be of little use, except in rare cases, because it would
be the sum of many different contributions whose relative phases vary rapidly with parameters
such as the angle 8 or the frequency f. It would be a complicated interference pattern and difficult
to disentangle. It is therefore best to use the method of steepest descents. This gives separate
contributions from the various saddle points or groups of saddle points, and each of these can be
given a useful physical interpretation. In a few cases Stott (1982) has evaluated the full integral
(27) numerically and has confirmed that it is equal to the sum of the contributions from the
saddle points.

In this and the following two sections we consider cases where £ in (26) is not small, so that the
Bessel functions in (28) can be replaced by their asymptotic forms:

Jo(£) ~ (2m)~H[exp {—i(§— jm)} +exp{i(§—im)}], (30)
A(8) ~ (2ng)Hi[exp{—i(§—im)} —exp {i(§— im)}], (31)

for |arg | < n.
If the first terms in each of (30) and (31) are inserted in (28) and if (26) and (29) are used, the
integral in (27) gives

F, — ich (2n krsin f)-} f (2 (g + 5) — 260 — 12) €5}
0

x hyexp{—ikr(n, sin/;’+nzcos,b’)}n% dn,, (32)
where the six #; are
€xa— ”2> eacy’ (”2€wa: —€4 6—) np/ (63 ”z)sl

—n, ewus (6+ €_— ”26:m:) / Ny np e:vy' J

The superscript (/) has here been omitted. The summation over / = 1,2 in (27) shows that two
integrals are implied in (32) but the method for finding the saddle points, described below, finds
them for both integrals so that the summation sign is not needed. The integral (32) with (33)
is the main formula used for the results in this paper.

If the second terms of (30) and (31) are used instead of the first, the effect in (32) is to replace
ief by —ie~#" and to reverse the sign of 7, in the exponent, and to change the signs of the third
and sixth terms of (33).

(33)
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512 YA. L. ALPERT AND OTHERS

When £7 in the exponent of (32) is large enough, the exponential factor is in general a rapidly
varying function of n, and is used to find the saddle points. The remaining factors are then
treated as slowly varying. The saddle points are given by

sin #+cos # (dn,/dn,) = 0, (34)
which is to be solved for n,.

In a loss free plasma n, and n, are real for propagated plane waves. The curve of n, against n,
is then a cross section by the plane ¢ = 0 of the refractive index surface. This is a surface of
revolution about the 7, axis in refractive index space. Equation (34) is the condition that the
ray direction (sin /3, 0, cos ) shall be an outward normal to the refractive index surface. This
property is still true in a plasma with losses, so that it is necessary to use a complex refractive index
space, and the solutions of (34) are complex. The theory was given by Buddeén & Daniell (1965)
for a plasma with electrons only, and by Budden & Stott (1980) for a plasma with positive ions.
They showed that (34) can be expressed as an equation of degree six for n2. Each of the six solutions
n* can then be used to find n,, n,. The refractive index surface always has two sheets and the
method finds the saddle points for both sheets, so that the summation over / = 1,2 in (27) and
implied in (32) is taken care of.

The six saddle points do not necessarily all contribute to the integral. To decide which ones
contribute it is usually convenient to use physical arguments. It is then useful first to consider a
loss free plasma. One method is to construct the refractive index surfaces and the ray surfaces
which are reciprocal to them. This method was used by Budden & Daniell (1965). An alternative
method used by Al’pert (19804) is to draw curves of /f against 8 from the formula

B = 0 —arctan (n~1dn/d0), (35)
where £ is the angle between the group velocity vector dw/dk and the magnetic field B. Equation
(85) is equivalent to (34). Some examples are given in figures 11 and 12. For a given /3 the values
of 6 for real saddle points can be read from the curves, and then n, n,, n, are found from the
dispersion relation. These methods show that, at some saddle points, n, is real and negative. They
are points of stationary phase on the negative real n, axis. The contour in (32) begins at n, = 0
and runs along the positive real axis, which suggests that the saddle points with negative 7,
should not be included. But when the integral (32) is modified to use the second terms of (30)
and (31) the effect is to change the sign of n, in (34). Thus these saddle points occur in the
modified integral for positive 7, and so they must be retained, with the signs of £, and 4 reversed
and with ieti” replaced by —ie-ii",

To complete the evaluation of (32) by steepest descents the value of d?n,/dn? = n;, is needed.
It can be found from (8) or (10) and is in general complicated, but since it is needed only at the
saddle point, (34) can be used and the result is

" npAB
Ny = == 5 pST (36)
n, Sll’l/)’ cosﬂ{np (ea:x + 63) - 2(6.1:::: - na) 63}
where A = 2€,,n5 4 (655 +6€3) N2 —€,,63— € € (37)

and
B = 4(eyp+€5) n,n,8in 1 c0S f — {66, 1} + (€4, + €3) N2 — €4, 63— €, €_} COS* 3
—{6e3n3 + (€ + €3) M) — 26,65} sin? B, (38)
Then the first order steepest descents contribution to (32) from each saddle point is

Fys = (kr) 2 Fn,n,(AB) Y hjexp { —ikr (n,sin B +n, cos B)}, (39)
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DIPOLE RADIATION IN MAGNETOPLASMA 513

where n,, n, now take their values at the saddle point, and the #; are given by (33). The factor
& has modulus unity. It depends on arg (n;) and on whether the first or the second asymptotic
form in (30) and (31) is used. For a loss free plasma, and for saddle points with real n, and =,
its values are as follows:

asymptotic term in (30), (31): first first second second
sign of n: + - + -
value of &: i -1 -1 -1

For a plasma with losses, and for complex saddle points, its value must be decided by studying
the direction of the line of steepest descents through the saddle point. When only the moduli or
the ratios of the fields are studied, it is not necessary to know &.

In using the contribution (39) it is assumed that the end #, = 0 of the contour of integration is
not too close to the saddle point. The condition for this is that at the saddle point

krnznlcos B > 2, (40)

which can be violated if 73 is too small. Some properties of the integral (27) in this case are
discussed by Stott (1982). It is not violated when cos 8 = 0 because (36) shows that n; has a
factor (cos ).

The formula (39) was used for many of the calculations reported in later sections. Other
versions of it can be derived by using the dispersion relation (8) and equation (34). Various
alternatives have been derived independently by the authors in Moscow and in Cambridge and
found to be algebraically equivalent.

Apart from the usual approximations of the first order saddle point method, no approxi-
mations were used in deriving (39) and therefore there is no restriction on the frequency range
for which it is valid. But it does use the asymptotic approximations (30) and (31) for the Bessel
functions. Thus when their argument £ (26), is less than about 2, the formula (39) is not reliable.
Methods of dealing with smaller values of £ are described in §7.

The contribution (39) is proportional to 1/r and may be thought of as part of the radiation
field of the dipole. The formula is most accurate when 7 is large and when the saddle point is not
too close to any other saddle point; we then say that the saddle point is ‘isolated’. The field for
two saddle points close together is derived in the following section.

A more accurate expression for the field of an isolated saddle point can be found by taking the
method of steepest descents to a higher order. This is equivalent to finding the second term of the
asymptotic series that must multiply (39). When this second term is small compared to the first,
it is safe to use the expression (39) alone. This second term is proportional to 1/7%, and may be
thought of as part of the storage field of the dipole source. The second terms of the asymptotic
approximations (30) and (31) also lead to contributions proportional to 1/r* and must be
included. They are + i/ for the two terms in (30) and #+ $i/£ for the two terms in (31).

If the integral in (32) is written

f ¥(n,) exp{—ikr(n,sin f+n,cos f#)}dn,, (41)
0
then the second order approximation to (39) is got by multiplying it by

i nlﬂl 5 (nlll)2 1 ¢,Il 1 ¢,I’ll/l iR
t RGO SRS A 8 - 42
+/crcos/)’{8(n’;)2 24 (ny)3 2wﬁnz+2¢(nz)2}+krs1n/)’np’ (42)

37 Vol. 309. A
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514 : YA. L. ALPERT AND OTHERS

where Ris +3 for j=30r6 and —§ for j=1,2,4,5. The first two terms in brackets { }
are given by Morse & Feshbach (1953, part I, p. 442), for the case where ¢ = 1. The next two
terms can be derived from their formulae.

The expression (42) is very complicated to calculate and is different for the six values of j in
(32) but it has been used for testing in a few cases. A quicker alternative but less reliable way of
assessing the accuracy of (39) is to examine Re {fr(n,sin £+ n,cos f3)} at the saddle point. This
may be called the phase of the radiation field. For a dipole in free space the storage fields are less
than about 5%, of the radiation fields for distances exceeding six free space wavelengths, that is
when the phase of the radiation field exceeds 12n. Thus if the phase for (39) exceeds about 12x
and differs by more than 12z from the phase for other saddle points, it is reasonably safe to assume
that (39) can be used with an accuracy of 5%, or better. It may be permissible to use a smaller
value of the phase for saddle points near a resonance cone (see end of §5).

The result (39) for the six field components (25) can be used to find the time averaged Poynting
vector

I =3}Z3E*NH+ENK*). (43)

The ratios of the field components (25), as given by (33), are the same as for a plane wave. It has
been shown (Al'pert 1946, 1948) that for a progressive wave with a real zin a loss free medium IT
has the same direction as the group velocity dw/dk, that is as the ray. In all cases tested this was
found to be true. It provides a useful check of the algebra and of the computer programs. For a
plasma with losses 7 is complex, so that the wave is inhomogeneous and the result is no longer
exactly true. But Suchy (1972) has shown that when —Im(z) < Re(n), II has the same direction
as Re(dw/dk). Some examples where IT is not parallel to the ray are given later, in §5. For a loss
free plasma some solutions of (34) can refer to an evanescent wave so that n is imaginary. It can
then be shown from the ratios (33) that I7,, = II, = 0. Thus II is perpendicular both to the ray
and to the magnetic field B. A specific example of this property was given by Budden (1961).
This result is illustrated later, at the end of §5.

5. EVALUATION OF THE INTEGRALS FOR RESONANCE

The solution 7% derived from (34) can be infinite for some values 6 = 6, and = f, and this
defines a resonance cone. It occurs when the coefficient of #* in (11) is zero and this gives

tan?0, = —eg/€,,. (44)
It can be shown from (11) and (35) that, at resonance

01‘ "ﬂr =t %’7‘: (45)
so that

tan® /J)r = - ezm:/em (46)

and when tan f, and tan 6, are real, they have opposite signs. From (46) it follows that there
cannot be more than one resonance in the quadrant 0 < 8, < 4n. Here we consider only values
of fand f3,in this range. For real f, and a loss free plasma, the value of n? that shows the resonance
is real and positive when f# is on one side of f,, and this is called the illuminated side. If it is
where # < f3,, then f, is called a (forward) resonance cone, and this occurs if ¢; < 0 (figure 14a).
The otherside is called the dark side and here n?is real and negative. When ¢; > 0 the illuminated
side occurs where # > /. and then f, is called a reversed resonance cone (figure 15).
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DIPOLE RADIATION IN MAGNETOPLASMA 515

Equations (16)-(18) show that as n—00, both 7, and #, are of the same order as n and both
-0 but their ratio n,/n, = tan f remains bounded and is found from (44). Equations (36)—(38)
show that n; is of order 1/n and tends to zero as resonance is approached. This means that the
curvature of the refractive index surface approaches zero as illustrated in figure 1. Then some
of the terms after the first in (42) become large near resonance, and therefore the first order
saddle point method of §4 fails. A more accurate formula than (39) would be needed and a
method of deriving it is outlined below.

Ficure 1. Cross sections by a plane ¢ = constant of typical refractive index surfaces for a loss free plasma with
a resonance cone. The marked values are only those in the range 0 < f, < }n. (a) Shows a (forward)
resonance cone and occurs, for example, for the electron whistler mode. (b) Shows a reversed resonance cone
and occurs, for example, for the Z mode. The #(0) curves for both these cases are given in §8.

For the illuminated side of a resonance, the value of 7, found from (34), for the saddle point
is real and positive so that it is on the contour of integration and contributes to the integral (32).
For the dark side, the value of 7, is purely imaginary. It is shown below that this saddle point
now gives a very small contribution.

If the effect of collisions is allowed for,e_, €., €3 are complex and (46) shows that f, is complex.
For real f3, therefore, exact resonance is never reached, and the transition from the illuminated
to the dark side of resonance is continuous. In the cases discussed later, §§ 10 and 11, it turns out
that the first order saddle point result (39) can be used for all real 3 going right through the
value Re(f;). The contribution (39) goes to a maximum value for 2 near Re(4,) and falls rapidly
to zero on the dark side. A demonstration of this is now to be given in outline.

When n, is large, the form (8) of the dispersion relation can be used to express n, as a series in
descending powers of 7, and it can be shown that the even powers are zero. Thus

n,= —n,tan B +C/n,+ 0(n;%), (47)

C= {eia: - %(6+€~ + eaemx)}/{(emc - 63) tan /}r} (4’8)
In the example of figure 14, Cis negative and in figure 15 it is positive. We shall discuss the case
of figure 14 so that the required integral is (32). For the case of figure 1a it would be necessary
to reverse the sign of n, in (32) as explained in §4. If (47) is substituted in (32) and if the terms
O(n,;?) are neglected, the integral takes the form

where

f: T(n,) exp[ — ikrcos § {n,(tan f—tan f;) + C/n }]dn,. (49)

37-2
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516 YA. L. AL’PERT AND OTHERS

The function T(n,) can also be expanded in descending powers of ,,, and (32) and (33) show
that the powers are all half an odd integer. Thus we consider the contribution from one term

f: n)l exp[ —ikrcos f{n,(tan f—tan §;) + C/n,}]dn,, (50)

where M is half an odd integer, and M < . This is a standard integral representation of a
Hankel function (Watson 1944, §6.21) and can be shown to be proportional to

HY.  (2kE), (51)
where
E = cos {C(tan f — tan ) }}. (52)

Thus the integral of (32) is expressed as a series of Hankel functions all with the same argument
as (51). When exact resonance is approached E tends to zero and the Hankel functions tend to
infinity. A small value of k7E effectively means that the near field (storage field) of the source
extends out to the receiver (Arbel & Felsen 1963). This is illustrated by the small values of the
phase when £ is near to f, (see figure 2). The exponent in (39) is —ikrncos (8 — f). It was shown
by Budden & Stott (1980, §4.3) that ncos (0 — ) tends to zero as resonance is approached. The
wave normal is almost perpendicular to the ray because 6 — f— i, and this more than compen-
sates for the large n. Thus the rate of change of phase is very small in the direction of the ray.
When E is large enough, the Hankel function (51) can be replaced by its asymptotic form,
which contains the exponential factor
exp (— 2ik7E). (53)
The condition for this to be valid to within about 69, is
|krE| > 1. (54)

The exponent in (53) is the same as the exponent in the integrand of (50) at the saddle point of
the integral. The resulting expression is then the same as the first order steepest descents value of
(49) and very close to the value of (39) at the resonance saddle point. In the calculations reported
later the condition (54) was satisfied in nearly all cases, so that (39) was adequate and it was not
necessary to use the expression with Hankel functions.

The criterion (54) is much less stringent than the condition, mentioned near the end of §4,
that the phase of the wave should exceed about 12r. But that condition was derived from a crude
argument based on properties of the radiation and storage fields in free space. The fields near
a resonance cone have very different behaviour from the fields in free space or for isolated saddle
points not near resonance, so it is not surprising that a different criterion of accuracy is used.

On the illuminated side of resonance, tan f > tan f, (figure 15) and Re(E) is positive. The
Hankel functions (51) are oscillatory. On the dark side £ is almost negative imaginary and (53)
shows that the Hankel functions, and thence the value of (49), are small and decrease rapidly
as |tan f— tan f,| increases.

This explanation has been given for a reversed resonance as in figure 14. The behaviour for
a forward resonance is similar, except that the illuminated side is where 8 < f3..

Some results illustrating these features, for a forward resonance, are shown in figure 2 which
is for a cold fully ionized proton plasma. It is seen, as expected, that when the collision frequency
is decreased, the resonance cone becomes narrower and more intense. In most of the results
reported later a range of 100 km or more and an electron collision frequency v, = 100s~! were
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used. For this value in figure 2 (top curve) the phase is never less than about 4 radians so the
condition (54) is well satisfied. Results from this example are included in figure 18. Further
results similar to those of figure 2 are given by Al’pert & Moiseyev (1980).

t B»LZ\'
10° A
\4.74
33.46 @
10* 46.81
57.13
65.84
max
o e _— 16.87 ¥ 33,60
——
1£] (b)
max | .

v 65.91 57.24
47,03

D S
100 144
34.02 N
~
10"
t
20.42

10° |
1.30 132 1.34 1.36 1.38

ray direction, #/deg
Ficure 2. Dependence of |E|, equation (117) §10, on ray direction f near a forward resonance cone in a cold
fully ionized proton plasma. In this example fy = 1.1937 MHz, fy = 2.3874 MHz, the frequency is
S = 8.5811x 10% Hz and the receiver is 100 km from the source. For a collisionless plasma the real resonance
cone angle would be g, = 1.381°. The electron collision frequencies v, used for the three curves were
(a) 100 571, (b) 500 s—1, (¢) 1000 s~1. All other collision frequencies were zero. The numbers by the curves
are the real part of the phase of the received signal, in radians.

On the illuminated side of a resonance cone in a loss free plasma the formula (39) applies for
a progressive wave so that the time averaged Poynting vector I has the direction of the ray (see
end of §4). On the dark side the wave is evanescent and IT is perpendicular both to the ray and
to B. When collisions are included, as in figure 2, the wave is never perfectly progressive or
perfectly evanescent. The transition from an almost progressive wave to an almost evanescent
wave would be expected to be gradual as # moves through f,. In the example of figure 2 and in
other examples studied it was found that for all # the angle
B’ = arctan (I1,/I1,), (55)
was very close to #. The difference was always less than 0.0005°, for the example of figure 2.
Thus the projection of IT on the x—z plane is always close to the ray direction. But IT has a com-
ponent /7, which is small for angles # well on the illuminated side, and large on the dark side
where the wave is approaching evanescence. The angle v between IT and its projection on the
x—z axis plane is given by
¥ = arctan {/1,,/(IIZ +II%)%}. (56)
Some typical values for the example of figure 2 were as follows.
For curve (a), v, = 100s~1:
p/deg: 1.30 1.32 1.34 1.36 1.37 1.38
v/deg: 0.3¢ 0.46 0.68 1.34 2.57 25.89.


http://rsta.royalsocietypublishing.org/

A \
! B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A Y

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

518 YA. L. AL’PERT AND OTHERS

For curve (¢), vo = 1000s71:
f/deg: 1.30 132 134 1.36 1.37
v/deg: 3.42 4.54 6.73 12.72 21.92.

6. EVALUATION OF THE INTEGRALS WHEN TWO SADDLE POINTS
ARE CLOSE TOGETHER

A value Sy of  where two solutions of (34) are equal defines a cone called a Storey cone
(Storey 1953). Here the refractive index surface has a point of inflexion so that

d2n,/dnd = 0 (57)

and two branches of the ray surface meet in a cusp. The curve of £ against 0, figures 11 and 12,
has a turning point, and two saddle points of the integrand of (32) coalesce. For directions near
this, the fields are expressed in terms of an Airy integral function and its derivative (Arbel &
Felsen 1963; Al’pert & Moiseyev 1980) and the formulae are derived in this section. On one side
of a Storey cone the values of z at the two saddle points are almost real and close to the value for
B = fs. This is called the illuminated side. The contour of integration must be distorted to go
through both saddle points. On the other side, the two values of n are approximately complex
conjugates and this is called the dark side. The contour of integration goes through only one of
the saddle points, namely the one whose contribution has the smaller modulus. The case where
the illuminated side has # > Re(f;) is called a reversed Storey cone.

The contribution from these two saddle points can be found by the method of Chester ¢t al.
(1957). Consider the integral in the form (32) or (41) and suppose that the exponential has two
saddle points where

N, = Myay Ny, (58)
which are close together in a sense to be explained. On the illuminated side, these are approxi-
mately real and it is assumed that Re(n,,) > Re(n,,). On the dark side they are approximately
complex conjugates and it is assumed that Im(n,,) > Im(n,,). Subscripts a, b will henceforth
be used to denote values at these two saddle points. Change to a new variable of integration 7
so that

—ikr(n,sin f+n,cos f) = —iP = —idy+ 9Pt — 37 (59)

Choose 7 and the constants 4, and %2 so that the saddle points of the right hand expression are

the same as (58). Then
tor Ny ="MNpa T=1T, let P = 1::1,1

(60)
andfor n,=n,, 7= -7, letP= Pb.J
Hence .
' 4y = 3B+ B), 39° = —Ji(B—B). (61)
The integral (41) becomes
J =J[1ﬁ(np) exp (—iP)dn,
L,
= exp (=idy) [ "¥(n,) (dn, /dr) exp (7 — 470, (62
L

where j(’_ means that the range of integration is restricted so as to include only the contribution
from the two saddle points (58). The limits /;, /, are discussed below.
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The function P(n,) is approximately a real cubic function of n,. If it were an exact cubic,
(59)-(61) show that 7 would then be a linear function

TR 77(2np—npa._npb)/(npa"npb)’ (63)
of n,. Then the two values of
0P /0n? = kS,, kS, (64)
at the two saddle points (58) would satisfy
Sy = — 8. (65)
P(n,) (a) P(n,) (b)

Shkocoaaad
5 ity
o

np
Ficure 3. The function P(n,) for a loss free plasma. Curve (a) is for the illuminated side of a Storey cone and
curve (b) is for the dark side. In this example S, = — S, is positive for curve (a), and positive imaginary
for curve (b).

In practical cases this is only approximately true and two slightly different values must be used.
Figure 3a is a sketch of the function P(n,) for positive S, on the illuminated side of a Storey cone,
and figure 35 is the same function on the dark side. Comparison with (59) and (60) shows that
on the illuminated side, approximately

»3 is positive imaginary; # is negative imaginary; %2 is real and negative, (66)
and on the dark side, approximately
73 is real and negative; 7 is real and negative; %2 is real and positive. (67)

In both cases, the coefficient 9/(n,, —n,,) in (63) is almost positive imaginary. Thus the real n,
axis contour in (41) maps into the imaginary 7 axis in (62).

When Re(S,) is negative on the illuminated side, the treatment is similar and need not be
given. The only difference is that the sign of  is reversed.

The factor ¢rdn,/d7 in (62) is now assumed to be a slowly varying function of 7 in comparison
with the exponential. Its values and derivatives are here used only at the two saddle points. This
is equivalent to assuming that for large + ir the exponential term dominates and here it makes the
integrand very small. This assumption is not always true but then the contributions for large |7|
are those from other saddle points of (41) and these are evaluated separately. Thus for the Storey
cone contribution only, the limits in (62) are set at

l; = —ic0, [y = +ico. (68)
Now let

'ﬁd”p/d'r = G(”p) = po+1(T2=92) +po (T2 =922+ ...+ 7{go+ q1 (T2 —7%) + qo(T2 — 922 + ...}
(69)
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Then

for 7= 7, bo+19, = Ga:\l

(70)
andfor 7= —9, p—ng, = Gb’J

so that po=3Gat+G), ¢ =317H(Ga—Gy). (71)

Higher coefficients p,, ¢, etc. in (69) could be found if needed, but they are not used here. They
could be used to find asymptotic series multiplying the two terms in (76) below.
Expand both sides of (59) in powers of 87 = 7 —7, about each saddle point 7, in turn, as far
as the squared terms. Then
—3ikS,(n, —n,,)% = — 77872,1

. (72)
— 3ikSy (n, —n,p)% = 7372 |

Hence
((2i77/kSa)% at m, =1y,
1(—2i17//ch)% at m, =mn,,

and from (65) with (66) and (67) it can be shown that these are approximately equal, real and
positive. From (69), (70), (71):

ipy = Ba(2in/ES)E+ (200 /kS,)Y, )
igo = 37 H{Wa(2in/kS,) — Yy (— 2in/kSy) ), )

where ., ¥, mean ¥ (n,), ¥(n,) respectively.
The standard integral representations of the Airy integral function and its derivative are

(Miller 1946):

ion,/or = (73)

(74)

ico
f exp(pPr —373)dr = 2ni Ai(9?);
iaom100 (75)
f " rexp(yr— %) dr = 2ni AV (12).

If py, ps etc. and ¢, ¢, etc. are neglected in (69), we have from (62), (69), (75):

J(B) = 2miexp(—ido) {po Ai(7%) + g0 AT (9%)}, (76)

where p, and ¢, are given by (74). This is the required result for the field near a Storey cone.

The formula (76) can be used to calculate all six field components (25). The required values
of p, and ¢, are different for the six. The order of the computer calculations (Cambridge) was
as follows.

(a) For each given f locate the six saddle points by solving the 6th degree equation (34) for
n? as described in §4.

(b) Select the two that contribute to the Storey cone. This was done by including in the data
a value of Re(n?) found previously using the method of Budden & Stott (1980, Appendix B)
to locate the Storey cone. The two solutions with Re(n?) nearest to the given value were selected.

(¢) For these two saddle points calculate 7% from (17), n2 from (18), n,, n,, then P from the
first equation (59), and 4, from (61). '

(d) Calculate #, %% from (61) and thence Ai and Ai’ in (76).
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These four steps are the same for all six field components.
(¢) Calculate the six values of G, and of G, from (73) and the first equation (69). Here by
comparison of (32) and (41), and use of (33):
Y = h;ieti® R(2n krsin §) 4 (77)
where
R(= Ry or Ry) = 1} {n}{eya+60) — 2(es = 1) €5} . (78)
Note that ¢ and R and each of the six #;, has different values at the two saddle points.
(f) Calculate p, and g, from (71) and finally &#; = J from (76).
These steps can be combined into the formula, valid when 0 < £ < in:

F; = nte~ 8" (kr) =% (cos #)~ (sin B) F exp( —idy) {P; Ai(n2) +iQ,(krcos B)~FAi'(52)}, (79)
where
By = Ry H + Rufly () ) |
Q= X HIRA (1) B~ Rufly( ) 1],
Here n; means 0%z,/0n%, R,, Ry, are given by (78) and

x = —7n%(krcos B)-%. (81)

The functions Ai and Ai’ in (79) are oscillatory when Re(%?) is negative. It can be shown,
either from (61) or by a simpler approximate treatment of the integral (32) or (41), that when
B — Bsis small, 92is approximately proportional to (3 — j3;) r¥. Hence the period of the oscillations,
as /8 varies, is proportional to r—%. Note also that y (81), is approximately independent of 7. The
oscillations of the terms with Ai and Ai’ in (79) are approximately in quadrature both in time,
and when f varies. Thus when the Ai’ term is large, the oscillations of the combination may have
only a small amplitude (figure 4, upper continuous curve), or may not appear at all (figure 5,
upper continuous curve).

The r dependence of the term containing Ai in (79) is r—%. Thus this contribution decreases
more slowly with range r than the normal radiation field, given by (89), which is proportional
to =1, This shows that the field near the edge of a Storey cone should be enhanced, especially at
great ranges 7, but in many practical cases, studied in later sections, this tends to be masked by
the effects of attenuation. The r dependence of the term containing Ai’ in (79) is 7% so that this
decreases faster than r—1.

Some typical results are shown in figures 4 and 5 for a (forward) Storey cone in a fully ionized
proton plasma. The continuous curves are for ranges r of 200 km and 2000 km. The chain curves
show the fields from the two saddle points (58), computed with the first order steepest descents
formula (39) with 7 = 200 km, and ignoring the failure of this formula near the Storey cone. The
upper continuous curve where £ < f can be thought of as an interference pattern from these
two fields. For # > f the larger of these fields does not contribute. The oscillations in figure 4
have a shorter period for the larger range, with the correct ratio 10% = 4.64. For r = 2000 the
minima are more pronounced because the Ai’ term is relatively much smaller. The association
of this behaviour with the curvature of the refractive index surface near the Storey cone angle 0,
has been discussed by Stott (1982). The results in figure 4 are for an electron collision frequency
Ve = 10057, In this example the attenuation is small. For a collisionless plasma the fields are
only about 0.79%, greater for r = 200km. The frequency, 560 Hz, is near to the proton gyro
frequency 649.8 Hz. Thus there is a small but appreciable difference between the electron

(80)
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107

|E| 107 — .

10™ !
8 9 10

i . ray direction, #/deg ' ;

Ficure 4. Dependence of |E|, equation (117) §10, on ray direction § near a Storey cone in a fully ionized cold
proton plasma with fi; = 1.1937 MHz, fy = 2.3874 MHz and for frequency f = 5.6x 102 Hz. For a
collisionless plasma the real Storey cone angle would be Sy = 11.68° as shown by the arrows. The two
continuous curves are for ranges r = 200 km, upper curve, and r = 2000 km, lower curve. The chain curves
show the separate contributions from the two saddle points (58) for 7 = 200 km. For these four curves the
electron collision frequency was », = 100 s~1. The broken curve is for r = 2000 km and v, = 100 s so
as to allow for the movement of the protons in collisions with electrons.

107 b
~~~~~ = Al
TS
! §'.\ e—
/ Nt
/ 3
_ e \
,EI 107 /./'/"./
'
4
10°° L 1 !
6 7 8 9 10 11

' ray direction, pf/deg
FIGURE 5. The same as figure 4 except that the frequency is 3.0 x 102 Hz and there is no curve for v,; = 100 s~
Oscillations do not occur for r = 200 km, upper continuous curve, because the Ai” term is too large. They do
occur for r = 2000 km, lower continuous curve, because the Ai’ term is relatively smaller. For a collisionless
plasma the real Storey cone angle would be fg = 9.46° as shown by the arrows.
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collision frequency v, = 100s~! used for the continuous curves, and a collision frequency

= 100s~! between electrons and moving protons (see Al'pert 19804, Appendix A). For
r = 200km the fields are about 2.29%, less, too small to show clearly on the scale of figure 4, but
for r = 2000 km the fields are about 20 9, less and are shown as a broken curve.

B g L] B
min max i |:
1ok v L
I
” i
] |
) |
z H
0.5 o
]
4
1
1
\
0 !
8 9 10 11 12
|E| 1| 1E|
min miax min
180
: 7
b0
°
T 0
o)
—180 1
8 9 10 1 12

ray direction, f#/deg
FI1GUurE 6. Shows how the direction of the time averaged Poyntmg vector IT depends on ray direction £ near a
Storey cone, for the example of figure 4. The continuous curve is for range r = 200 km and the broken curve
is for range r = 2000 km. The polar angles O, @ of IT are defined in the text. The arrows show where |E|
is 2 maximum or a minimum for » = 200 km.

The time averaged Poynting vector I, (43) was calculated from (79) for ray directions near
the edge of a Storey cone. Since the fields on the illuminated side are now effectively composed
of twowavesassociated with the two contributing saddle points (58), it is no longer expected that IT
is approximately parallel to the ray, as it was for a single saddle point (end of §4). Figure 6
shows how the direction of IT changes when /8 changes, for the example of figure 4. The behaviour
in other cases studied was very similar to this example. The direction of IT is specified by its polar
angles ©® measured from the ray direction as polar axis, and azimuth angle @ measured from
the plane y = 0. The Poynting vector has a y component II, which changes sign roughly at
those values of # where | E| is a maximum (@ ~ 0° and 6 approximately a minimum in figure 6),
or a minimum (@ = 180° and @ approximately at a maximum).
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7. EVALUATION OF THE INTEGRALS FOR FIELDS NEAR THE AXIS

We now consider the evaluation of the integral (27) when £ (26), is so small that the asymptotic
forms (30) and (31) for the Bessel functions cannot be used. It is convenient to rewrite (27), with
the cylindrical coordinates

p=rsinf, z=rcosp, (82)
of the receiving point and with the use of (29), thus
7= [ 03 ernte5) — 2cra—12) e gy exp (~iken,) n (55)

where the summation over / = 1,2 has been omitted as explained in §4. The six g; contain the
Bessel functions and are given by (28).

The argument § = kpn, of the Bessel functions can be small for either of two reasons. First, at
asaddle point of (83), n, may be small. Then the saddle point is near the end n, = 0 of the contour
of integration and (40) is violated. A form of the steepest descents integral can be derived in this
case. It uses an error function and is complicated. But the integral of (83) contains the small
factor 73, so that the contribution from this saddle point is necessarily small. This is just an
expression of the property that a dipole does not radiate in the direction of its axis. Thus this case
is not of great interest for a dipole source parallel to the z axis. It would be important for other
orientations of the dipole as given in Appendix B, but no results for these are given here.

The second reason for a small § is that p is small so that the receiver is very near the dipole
axis, but n, is not small. This is a most interesting case first described by Al’pert & Moiseyev
(1980). To see when it is likely to be important, consider the special case p = 0, # = 0. The
refractive index surface must have a normal parallel to the z axis where n, # 0. Well known
cases, for a plasma with electrons only, are the whistler mode and the Z mode, as sketched in
figure 7. Since these surfaces are surfaces of revolution about the z axis, there is an infinite number
of normals meeting the surface on a circle. There is no single normal of the kind that was associated
with each saddle point given by (34).

Since £ is small, the Bessel functions in the g; of (83) are slowly varying functions of 7,. In
applying the method of steepest descents to (83) it may therefore be assumed that the saddle
points are determined by the exponential alone. Thus they are given by

dn,/dn, = 0, (84)
which is the same as (34) with £ = 0. The equation of degree six for 7%, to which (34) leads, can
be factorized in this special case (Budden & Stott 1980). Two of its solutions are n2 = ¢, ¢_, but
these both give n2 = 0 so that the first order steepest descents contribution to (83) is zero. The
remaining four solutions are in two equal pairs (Budden & Stott 1980, equation (A 7) with # = 0)
and they satisfy the quadratic equation for n2:

(er+e) (e +e_—2e5)nt+2(e; +e_) {e5(e, +€.) —2¢,€_n?
+4(ere)?— 26,6 eg(e; +e ) —{(e, —e) e} = 0. (85)
The solutions, when used in (16), (17), (18) give

n = - 26;1/63_ [1 + iexa: + 63{_ 621/ + (ea:x — 63)2}%] , (86)

- (em - 63) 2 2€xy €22€3
1 2i¢
ng B PEPRY [(€+ €_— esexx) (exac - 63) + 26362111 * _“%[ —€3€4a {Giy + (exx_ 63) 2}]% (87)
(exx 63) (eacm 63)
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The value (36) of n; cannot be used when f# = 0 because its numerator and denominator are
both zero, but an alternative expression valid when (84) is true, is

0= — 66a:a: 72% + (ezz + 63) ng —€pp€3 €€
. =
ﬂz{ﬂ% (e:m: + 63) -2 (eza: - ng) 63}

Then the first order steepest descents evaluation of (83) gives for the contribution at one saddle
point

(88)

F; ~ ¥ g n?(2nn, [kz)} exp (—ikzn,)
X [{(ea:a: + 63) ni + 263(”2 - em:)}{ - 66:1::0”/2) - (e:m: + 63) ng + €24€3 + € 6_}] _é: (89)
where the g; are given by (28), and #, n,, n, take their values at the saddle point. The sign in the

exponential is opposite to the sign of Re(d?z,/dn3). The square root with positive real part is
used.

(a) n, (b) n,
/]
v
/ ] 7/ 1
[] 1
4-np-> ]*np-p

Fi1Gure 7. Some examples of forms of the refractive index surface which give solutions with n,, # 0 when £ = 0.
The arrow is the direction of the ray and for § = 0 it is parallel to the z axis. Example (a) is for the Z mode
and example (b) is for the whistler mode, in an electron plasma.

The fields (89) are proportional to z-3, thatis to r—% (8 = 0). Thus, at great distances from the
source, they can be much larger than the fields (39) or (76) which are proportional to r—1
and r—% respectively. Some examples of this field enhancement near the axis are given later in
§§10 and 11.

It is necessary to decide whether or not the contour of integration goes through a saddle point
given by (85). For a loss free plasma, a solution 73 which is real and positive gives a saddle point
on the real positive half of the n, axis, and it is a point of stationary phase for this contour. This
occurs for the examples of figure 7. Thus when the solution 7, is real and positive, or nearly so
for a plasma with losses, it would be expected on physical grounds that the contribution (89)
must be included.

For a solution 7} which is real and negative, the saddle point 7, is imaginary and does not lie
near the original contour. The argument £ of the Bessel functions in (28) is imaginary, so that
these functions are modified Bessel functions I(¢), I;(§) where & = i, which increase very
rapidly as £ increases. This suggests that these saddle points cannot contribute to the field.

The transition between these two cases occurs, for a loss free plasma, when (85) has a solution
n3 = 0, that is when the last term of (85) is zero. For conditions near this a more elaborate treat-
ment of the integral (83) would be needed.

From the six field components (89), the time averaged Poynting vector IT, (43) can be calcu-
lated. Some examples of results obtained with the formula (89) are given in figures 8 and 9 which
show how |E| and the three components of IT depend on distance x (= p) from the z axis, for a
receiving point in the plane y = 0 at a fixed distance z. Since the fields have cylindrical symmetry


http://rsta.royalsocietypublishing.org/

' \
A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

-
A\

' \

<

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

526 YA.L. AL’PERT AND OTHERS
151 /\
10
IE| N\
5 \/
0 0.05 0.1
10°F
0 / \ el
~—_
—1073 1)
o/
—4X
3’5 —3x10‘3—\/
2
g 400}
é B
S,
) 200+/—
S,
0.05
—100+ Oil
x/km

Ficure 8. Dependence of |E|, equation (117) §10, and of the components of § = 4Z,I, equation (43), on
distance x from the axis of the dipole source. This example is for a fully ionized proton plasma with
Su = 1.1937 MHz, and fy = 2.3874 MHz. The frequency is f = 2.984 x 10* Hz, the electron collision
frequency is ¥, = 100s—* and the receiver is at a distance z = 100 km from the plane z = 0 containing
the source. Here ITis the time averaged Poynting vector. These results are for the electron whistler wave, that
is the ordinary wave, for which the refractive index surface has the shape of figure 75.
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FicurE 9. Similar to figure 8 and for the same plasma, but the frequency is f = 2.268 MHz, and the distance
of the receiver from the plane of the source is z = 200 km. These results are for the Z meode, that is the
extraordinary wave, where there is a Storey cone but no resonance cone. The refractive index surface has
the shape of figure 7a.
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about the z axis, [T, is the same as I, and I, is the same as I1, for x > 0. Since the argument §,
(26) of the Bessel functions in (28) depends only on x = rsin /4, and not on z, the form of the x
dependence of the fields and of IT is independent of z. Thus the curves like those of figures 8 and 9
are the same shape for all z, and only the ordinate scales would change when z is changed.

Formula (28) shows that for a loss free plasma the four field components E,, E,, #,, i, are
all in phase or in antiphase with each other, and E,, #, are in quadrature with them. Then IT,
is zero. This is not strictly accurate. Since all field components decrease as z-%, the electro-
magnetic wave energy stored within any cylinder, p = constant, must decrease as z=* and there
ought, therefore, to be a radially outward flow of energy. Thus I7, = IT, should have a small
positive value for all x. The discrepancy arises because of the assumption, made in using
(84), that the Bessel functions in (83) are slowly varying and do not influence the determination
of the saddle point. A more accurate method that does not use this restriction is given in outline
below.

For the plasma studied in figures 8 and 9, collisions are allowed for and I7, has a small but
non-zero value. For small x, IT, is negative so that there is a radially inward flow to replace the
energy being absorbed by the plasma near the axis. The rate of absorption per unit volume
is —divIT and itis easily checked that thisis everywhere non-negative. It is interesting to note
that T, (= I1,) is comparable with II,. Thus the energy flux has a large component around the
axis.

The more accurate treatment mentioned above is as follows. Instead of treating the Bessel
functions in (28) as slowly varying functions of 7, in the integrand of (83), they are written in
terms of Hankel functions thus:

In(€) = HHRP (&) + HP(£)} = LY (§) € + L (§) e 7%, (90)
where, from (26)
§= /anp, (91)

and where m = 1,2 in the present application. When £ is large enough, the functions L are
simply the factors that include £~% in (30) and (31), but for smaller £ they are more complicated.
Integral representations of them have been given (Watson 1944, §6.12, and other standard
texts) but these are not needed here. Now the exponentials in (90) are included with the expo-
nential factor in (83) and the saddle points are found for the combined exponential

exp{—ik(zn, F xn,)}. (92)

This is exactly the same as was done in §4 when the saddle points of (32) were found by using (34).
The result gives two saddle point values n,,, n,5. If ¥ = 0 these values are equal and are the sol-
utions (86) of (85) previously used in (89). But if x # 0, the values are slightly different. They
are now inserted in the contributions, analogous to (39), from the saddle point of each term in
(90). These contributions therefore contain factors

LY (kxn,,) exp (ikxn,,) = 3HP (kxn,,),
and
Lﬁﬁ)(kxan) exp (—ikxn,g) = §HP (kxn,p), (93)

for m = 1, 2. In this process the functions L(§) are treated as slowly varying and therefore do not
affect the determination of the saddle points. But they are finally recombined with the exponential
factors in (93) to give Hankel functions. The result is that the formula (89), for each of the six
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field components, is replaced by two terms derived from the two Hankel functions in each of the
Bessel functions of (28). Thus, for example, the result for j = 11is

F ~ TN k)M [ by V (1,4 (€ — 1) H(kin, ) cxp ( —ikzn, )

+ 2y V(nn) (600 —h) H®(kan,5) exp (—ikzng)], (94)
where V is the factor [...]~% in (89) and where subscripts A, B denote values at the two saddle
points 7,,, n,5. Formulae for the other five field components are constructed in a similar way.
These formulae have not been tested or used for any of the results presented in this paper.

The results of this section and of §§ 5 and 6 are summarized by the schematic diagram figure 10
which shows the possible arrangements of the regions of enhancement in the radiation polar

Y | \

diagram for various conditions. It applies for a very large range, in a homogeneous plasma with
very small losses so that the enhancements are large. In the results studied later, for ranges of
only a few hundred kilometres and for a plasma with losses allowed for, the enhancements are
seldom so marked as is suggested by figure 10.
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Ficure 10. Schematic diagrams showing the possible arrangements of the regions of signal enhancement. The
meaning of the symbols is: SC Storey cone, RG resonance cone, AE axial enhancement, RSC reversed Storey
cone, RRC reversed resonance cone. The shading on the cones indicates the dark side. The arrow shows the
direction of the superimposed magnetic field B. For a given plasma, the frequency ranges where a given type
of enhancement is present can be found from the charts such as figures 15, 20, 22, and these can be used to
find which of the above diagrams applies for a given wave, ordinary or extraordinary, at a specified frequency.

(f)

THE ROYAL
SOCIETY

For any plasma there are eight different types of arrangement of the cones and the axial
enhancement, as shown in figure 10 (a—%). Some of their properties that apply for the range
0 < f < }m are summarized as follows:

(a) there can be at most one resonance cone or one reversed resonance cone;

(b) there are no cases where more than two cones are present;

(¢) a resonance cone never occurs with a reversed Storey cone; a reversed resonance cone

PHILOSOPHICAL
TRANSACTIONS
OF

never occurs with a (forward) Storey cone.
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(d) when axial enhancement is present there must be a Storey cone, and there may also be
a resonance cone, figure 104, b or no other cone, figure 10¢;

(¢) for a frequency range where a Storey cone and a resonance cone are both present, the
the Storey cone is outside (greater f) for the smaller frequencies, figure 104, and inside for the
greater frequencies, figure 104; (thus there is some frequency for which the two cones have the
same ray direction # (not shown in figure 10) and here their wave normal directions 6 have
opposite signs.)

(f) similarly, for a frequency range where a reversed Storey cone and a reversed resonance
cone are both present, the reversed resonance cone is outside for the smaller frequencies,
figure 10g and inside for the greater frequencies figure 10%; (again there is some frequency for
which the two cones have the same ray direction, and the complements {m— 6 of their wave
normal directions # then have opposite signs.)

(¢) when a Storey cone and a reversed Storey cone are both present, figure 10¢, the reversed
Storey cone has the smaller value of . '

8. THE TWO WAVE TYPES AND THEIR §(f) CURVES
(a) The terms ‘ordinary’ and ‘ extraordinary’

The results given in previous sections for the radiated field of a dipole depend on the properties
of the homogeneous plasma and these are completely determined by the three numberse_, ¢, €3,
of (5), which are functions of the frequency w. For a plasma with losses they are, in general, com-
plex, and this applies to the results presented here, which are for a plasma with collisions included.
To classify the results, however, it is useful to consider a loss-free plasma so that collisions
are ignored and €_, €, €5 are all real. This is done throughout this and the following section.

We now consider the range 0 < 6 < in. The behaviour in other ranges of ¢ is similar. When
0 is not equal to 0 or }x, the square root S of (12) can never be zero. It is infinite, because it has
simple poles in the w plane, where either e_ or ¢, is infinite, that is when o is equal to any of the
gyro frequencies 2; or wy, but then the two refractive indices are unequal and not infinite.
Thus these two values of n(w), given by (13), can never be equal for any real w. One of them, but
only one, is infinite at a resonance frequency where the denominator of (13) is zero. Apart from
this, the two values of n(w) are continuous distinct functions of w for all real w, provided that the
sign of S is reversed each time w passes through a gyro frequency 2; or wy. This reversal of sign
occurs automatically if the real axis path in the complex w-plane is indented on the negative
imaginary side near each pole w = 2;, wy.

"The refractive index of the wave for which S is positive when wy < wand when 2,,, < w < £,
with 7 odd, is denoted by 7, and this wave is here called the ordinary wave. Similarly the value
with the other sign of § is denoted by 7, and the wave is called the extraordinary wave. This
choice of the terms is made here purely for convenience of description and is not necessarily the
best for general use. Some authors use a different convention (see below).

Consider, now, an ‘electrons only’ plasma, that is, one in which the positive ions are assumed
all to be infinitely massive so that they do not affect the dispersion relation. Then it can be shown

that, for all : n3(0) >e; when 6-1inm. (95)

Now ¢, is independent of B and it is for this reason that the wave is called ‘ordinary’. Similarly,
for the extraordinary wave it can be shown that

n3(0) >e€,e_/e,, when 0-1im. (96)

38 Vol. 309. A
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These results also apply for any cold collisionless plasma at frequencies much greater than the
greatest ion cyclotron frequency. This use of ‘ordinary’ and ‘extraordinary’ is adopted by most
ionospheric physicists who use high frequencies and are not concerned with the effects of positive
ions of finite mass. At lower frequencies, however, where the non-infinite ion mass is important,
the results (95) and (96) are not always true. ,

The two refractive indices 7, and 7, can only be equal when the square root (12) is zero, and
this can occur only in the following three conditions (r is any integer):

(i) crossover (§§8 (viii), 9(1)): @ = W

0=rn, e_=¢, =nd=n (97)
(i1) Window frequency (§9(d)): & = w,

0=rn, € =0; (98)
(ii1) O-E transition: w = wy
0= (r+3m, e3=c e_[ey. (99)

When positive ions of non-infinite mass are present, the number of real bounded values of wq
is equal to the number of such positive ion species. If w is decreased to just less than the greatest
wr, it can be shown that

n3(0) >e; and n%(0)—>ec,e_Je,, when 6->1in. (100)

Some authors, for example Booker (1975), then interchange the names ordinary and extra-
ordinary, so that a wave of fixed type changes its name when the frequency w is changed and
passes through one of the values wy. This can be inconvenient, especially when there are more
than one ion species. For the description of the results of the present paper we prefer to be able
to use the terms ordinary and extraordinary unambiguously without specifying the frequency.

The change from (95) and (96) to (100) occurs each time w passes through one of the values
wyp. Thus the number of frequency ranges where (100) is true is equal to the number of positive
ion species of non-infinite mass.

(b) Curves of B(0)

A curve n(0) with n as radius and 6 as polar angle is a cross section of the refractive index
surface, which is formed by rotating the curve about the z axis, & = 0. The direction f of the ray,
that is the radius from the source to the receiving point, is related to 6 by (35). This shows that
the ray direction is normal to the refractive index surface (Al’pert 1948, 1967, 19802; Bremmer
1949; Rawer & Suchy 1967; Budden 1961). It is also useful to consider a curve with the ray
velocity

V=c/(ncosa), a=0-p4 (101)

plotted as radius with £ as polar angle. This is a cross section of the ray surface which has the
shape of the wave front that has travelled some distance from the source (Budden 1961; Walker
19774).

Refractive index surfaces n(f) and their associated ray surfaces V(f) are often classified by
means of the C.M.A. diagram (Clemmow & Mullaly 1955; Allis 1959; Walker 1977a). It is here
convenient to use a simpler method in which curves of f against 0 are studied (Al’pert 19804),
and some typical curves are shown in figures 11 and 12. Cirossing a line in the C.M.A. diagram
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Ficure 11. Some examples of curves of # against 6. This sequence is for the ordinary wave (defined in §8) in a
collisionless plasma with one species of positive ion. The diagrams are in order of increasing frequency, and
in each diagram the limiting curve at the lowest frequency is a broken line, and at the greatest frequency it
is a chain line. The symbols by these curves are the transition frequencies defined in §9 and apply when
W, < wy. Ifw, > wy the sequence is the same but in (d) the symbol w, must be replaced by wy. Then in the
frequency range wy < @ < w, the ordinary wave is evanescent for all 8, so there are no curves for this range.
‘ Typical curves are shown as continuous lines, and in each diagram they have the same general shape. Thus
P | each diagram corresponds to a single region of the C.M.A. diagram and therefore to a fixed topology of the
<, refractive index surface. In curves (a) and (¢) there are no Storey cones nor reversed Storey cones nor reson-
—_ ance cones. In (b) there is a Storey cone and a reversed Storey cone. In (¢) there is a Storey cone and a
< resonance cone. In (d) there is a resonance cone but no other cones. Curves (¢), (d), (¢) would apply also to
> > the ordinary wave in a plasma in which only electrons are effective. Then the curve for zero frequency
O = would be very close to the curve marked w,, in (¢).
ez 4 .
50 @) indicates a change in the topology of the n(0) curve and there is a corresponding change in the
= O curve £(0). The main properties of these curves are as follows.
Hw (i) From the dispersion relation (11) it can be shown that /00 = 0 when 6 = 0, or + }=.

Hence from (34) it follows that the £(0) curves always go through the points ¢ = 0, f# = 0, and
0 = in, f = }n provided that # is real there.

(ii) The refractive index surface is symmetrical about the lines 6 = 0, and 6 = + }=, and
hence the #(6) curve has a centre of symmetry at ¢ = 0, # = 0 and at 0 = }n, f = }n.

(iii) One value of the refractive index n(0) is zero for all 0 when e, = 0, or e_ = 0, and this is

called ‘cut-off’. It occurs for the frequencies w = w,, w_respectively. When w is greater than the
38-2
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cut-off value and very close to it, one of the functions n(6) is real and small, and it can be shown
from (8) that £(6) approaches the limiting form given by

tanf = i tand : (102.)

(Budden & Stott 1980). Examples can be seen in figures 12¢ (curve w_), 125 (curve w,) and in
figures given by Al’pert (1980a). -

(iv) Both functions #,(6) and n,(6) are single valued for 0 < 6 < }=. Thus the two £(6) curves
are each single valued, and also continuous, except at resonance (see (v) below).

(v) One refractive index curve n(#) can sometimes be an open curve with z going to infinity
" at some value 8 = 6,, as described in §5, and this defines a resonance cone where § = ;. The
conditions for this are (44), (45), (46). Thus, at a resonance, the £(6) curve ends on one of the
lines (45), which will be called resonance lines. It can further be shown that on these lines

B0 = —1, (103)

so that the curves always meet the resonance lines at right angles.

(vi) The B(6) curve may cross the line § = 0 at some value 6 = 6, # 0, as for example in
figures 11¢ and 124, d. There is then, in refractive index space, a cone of directions 6 = 6,, where
the ray, that is the normal to the refractive index surface, is parallel to the z axis, as in figure 7,
and the conditions for field enhancement on the z axis, § 7, are satisfied.

(vii) The refractive index surface may have a point of inflexion. The condition for this is
discussed by Clemmow & Mullaly (1955); Walker (1977); Budden & Stott (1980); Al’pert
(19804). Itis given by (57) which can be shown, from (34), to lead to 03/00 = 0. It occurs where
B = ps, 0 = 6,, and here the £(0) curve has a turning point, and the ray surface V(f) has a
cusp. If # and 828/962 here have opposite signs, there is a Storey cone at £ = f,, with the illumi-
nated side where |8| < |f|. If # and 0%8/06% have the same sign there is a reversed Storey cone
atf = fs.

(viii) The special case gwen by (97) is called ‘crossover’ and w,, is the (angular) crossover
frequency. The number of different values of w,, is one less than the number of positive ion
species of finite mass. Thus crossover cannot occur in a plasma with a single positive ion species,
and so there are no examples of it in figures 11-14. At crossover the £(8) curves are simple. One
refractive index surface is a sphere 72 = €_ so that the £(0) curve is just the straight line g = 6.
The other refractive index surface is a conicoid given by

n? (e_sin? 0 +€5cos20) = e_ey, (104)
and £(6) is given by
tan f} = (e_/e5) tan 6. (105)

FiGURE 12. Similar to figure 11 but for the extraordinary wave in a collisionless plasma with one species of positive
ion. This wave is evanescent for all § when @ is in the ranges 2 < ® < w_and vy < © < ©,. When o, < 0y
the sequence is consecutively (a)—(j). When wy < @, the sequence is (), (b), (¢), (d), (k), (8), (i), (j). In (f)
the symbol I indicates a point of inflexion where the gradient is zero. In (g) the curves have been distorted
to show the shape; in practical cases the limiting curve marked @y is very close to the line § = 90°, and the
limiting curve wyg, is actually the same as in (f). Curves 12(c) and 12 (j) are similar to 11 (¢) and have no
cones. Curves 12(f) are similar to 11 (¢) and also have no cones. Curves 12 (a) are similar to 11 (¢) and have
a Storey cone and a resonance cone. Curves 12 () are similar to 11 (d) and have a resonance cone. Curves
12 (¢) and 12(g) are similar to 11 (b) and have a Storey cone and a reversed Storey cone. Curves 12 (i) have
a reversed resonance cone and do not appear in figure 11. Curves 12 (%) and 12 (k) are similar to each other;
they have a reversed resonance cone and a reversed Storey cone and they do not appear in figure 11. Gurves
12(d) have a Storey cone and do not appear in figure 11.
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In practical cases, at crossover, €_ is positive and ¢; is negative so that (104) is a hyperboloid
with a resonance where : C -
tanf = +(—¢fe )}, tanf = F(—e_/e)t. (106)
The £(6) curve (105) has negative slope, and its shape is as in figure 114 or 125. The hyperboloid
will be called the outer refractive index surface and the sphere will bc called the inner refractive
index surface.

Near crossover, when e+ —e_is small but not exactly zero, the two surfaces separate and cannot
intersect. It can be shown that if €, +¢€; > 0, the () curve for the inner surface has points
6 = +0,, where df/df = 0, and points 6 = + 6, where # = 0 (see, for example, figures 7a,
12d). Further, 6, > 6, and both tend to zero when |e, —e_| - 0. This occurs for either sign of
€, —¢_. Thus the inner surface has a real Storey cone at 8(6;) and shows field enhanccmcnt near
the axis (§7). For the outer surface £(6) is monotonic near 6 = 0.

If €,, + €3 < 0 the behaviour is similar but the real Storey cone and the field enhancement
occur for the outer surface (see figures 76, 11¢, 124) and the 8(6) curve for the inner surface is
monotonic near § & 0. This is the most commonly occurring case. :

If €,,+€3 = 0 both B(0) curves are monotonic, and neither surface shows a Storey cone nor
field enhancement near the axis. -

(ix) At extremely low frequency, less than the least of the ion-cyclotron frequenc1cs, it can
be shown from (5) that, if colhsmns are neglected

:—} = 1+p/ey B + N, M2/ (60 BY) +0(0?)
-+ ) R
‘ €3 = 1 —0)2/0)2

where p is the density of the medium and M? = ZCiM ?2—m? Thus in- the limit w—->0 the

(107)

condition (97) for crossover is satisfied. One of the two refractive index surfaces is the two parallel
planes ' :
n* = e_sec? 6, ‘ -(108)
which is the limiting form of the hyperboloid (104). The #(8) curve is the line # = 0. For small
 # 0 this curve acquires a positive slope where f = 0, figure 12a. It can be shown from (34)
and (19) that it crosses the line # = 0 where

tan?f ~ + (64 —€) (—2¢5)t (e++e )i, , (109)
and (44) shows that it meets the resonance line where 6 is slightly less than 4r and £ < 0. It has
a maximum, corresponding to a Storey cone, at values ,, f; which decrease when  decreases.
It can be shown from Budden & Stott (1980, equation (B 5)) that they move to §;—> 0, f;—0
when @ — 0. The other refractive index surface is the sphere

, nt=cec_. : - (110)
These two waves are sometimes called Alfvén waves by analogy with the waves studied in

magnetohydrodynamics for a conducting fluid of dens1ty 3 in a constant magnetic field B. For
both waves when 8 = 0, the wave velocity is :

cle)tx B(pop)-% prov1ded that p/e,B? > 1. o - (111)

This is the same as the Alfvén velocity in a fluid.
For the wave (108) the 6 dependence of the refractive index is the same as for an Alfvén wave
in a fluid. It can be shown from (33) that when w— 0 the only non zero component of the wave’s


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

DIPOLE RADIATION IN MAGNETOPLASMA 535

magnetic field is 5. In the fluid analogy the fluid displacement would also be in the ¢ direction,
that is perpendicular both to the wave normal and to B. This wave is sometimes called the shear
Alfvén wave (Stix 1962); its propagation is unaffected by the compressibility of the fluid. In
figures 15, 20 and 22 it is called simply the Alfvén wave.

For the wave (110) there is no close analogy with Alfvén waves in a fluid, but it is sometimes
called the ‘modified Alfvén wave’. The only non-zero component of its electric field is £;. This
wave is not generated by a dipole source parallel to the superimposed magnetic field.

@y
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Ficure 13. Dlagram similar to C.M.A. dlagram, for the ordinary wave in a cold collls:onless plasma with one
species of positive ion. This example is approximately correct for a fully ionized proton plasma. For a plasma
with ‘electrons only’, the transition curves marked o, and wgg; would be absent and the region with a
resonance and a Storey cone, that applies to the whistler wave, would extend down to zero frequency.

9. CLASSIFICATION OF RESULTS: TRANSITION FREQUENCIES

. Either of the two f#(6) curves, and its associated refractive index surface and ray surface,
changes its form when  passes through certain transition frequencies. These correspond to
boundary lines in the C.M.A. diagram. Their behaviour will first be described for a fully ionized
proton plasma, since this is typical of a plasma with a single positive ion species. Thus there is
only one ion cyclotron (angular) frequency £;, and it will here be written 2.

For a given type of plasma it is usual to draw just one C.M.A. diagram. But since the ordinary
and extraordinary waves are separate systems, unconnected when 6 # }rr, as explained in §8,
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it proves helpful to use separate diagrams for the two waves. Figure 13 is such a diagram for the
ordinary wave, but the ordinates and abscissae are different from those normally used. The
abscissa is wy/wy and is independent of  so that each vertical line represents a plasma of fixed
composition. The ordinate is w/wg. Figure 14 is a similar diagram for the extraordinary wave.

extraordinary

Y 4

Wgga

SOCIETY

Wrsz & -1
RSZES 10

wfoy

0%

107 1 10

Y o

w0y
Ficure 14, Similar to figure 18 but for the extraordinary wave. For a plasma with “electrons only’, the transition
curves marked 24 and wg; would be absent and the region of evanescence would extend down to zero
frequency. The curves 25 and wg, are actually extremely close together. They have been deliberately
separated here, so as to show their form. Similarly, the curve wgg has been distorted. It is actually extremely
close to the line wy;. : ‘

SOCIETY

Figure 11 shows the types of (6) curve that occur for the ordinary wave, and should be studied
in comparison with figure 13. In each diagram of figure 11 the curves are of the same type. The
limiting curve at the lowest frequency is shown as a broken line and at the greatest frequency it
is a chain line. These limiting curves occur at the transition frequencies which are listed below.
For the lowest frequency range, figure 11a, the 2(6) curve is closed and has no points of inflexion.
In the limit of zero frequency it is a sphere and the £#(6) curve is the straight line £ = 6. This is
the modified Alfvén wave mentioned at the end of §8. As the frequency is increased its properties
are given consecutively by figures 11 (a—d). For the greater frequencies in this sequence the wave
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is known as the ‘electron whistler wave’. The upper frequency limit for this wave is either o,
when w, < wg, or vy when wy < w,. When o > w,, figure 11¢, the wave is known simply as the
‘ordinary wave’ and is then the one commonly used for probing the ionosphere at high frequency.

Similarly figure 12 shows the #(6) curves for the extraordinary wave and should be studied in
comparison with figure 14. The sequence here is more complicated and depends on whether
Wy < Wy Or Wy > W, as explained in the legend for figure 12, but in both cases there are three
types of wave in three frequency ranges separated by the two ranges 2, < w < w_ and
wy < 0 < w, where the wave is evanescent for all . The wave for the lowest frequency range,
® < Ry, is the Alfvén wave, figures 124 and . The wave for the range w_ < ® < wy is known
as the Z mode. This range includes the two curves labelled wgg, and wggs which join where
their tangent is vertical at wy/wy = g say (g < 1). If w, < gwg the sequence of #(6) curves for
the Zmodeis 12 (c, ...,7). If vy, > wy the sequenceis 12 (¢, d, k). If gy < w, < wy the sequence
is not shown in figure 12. Another diagram is then needed for the frequency range v, < @ < wg.
Its curves would have the same shape as in figures 11¢ and g but there would be no limiting
CUIVES Wgey OF Wggs.

Transition frequencies are denoted by £ (forion cyclotron frequencies) or by w with a subscript,
for example v, w,, wgg as used earlier. When a given type of transition occurs at more than one
frequency, for the same plasma, the various values of the transition frequency are given an
additional integer subscript, 1,2, 3, ... in order of increasing frequency, regardless of whether
the transition occurs for the ordinary or the extraordinary wave. Thus for a plasma with only
one species of positive ion, there are three values of wg, of which wg, and wgs apply for the extra-
ordinary wave, figure 14, and wg, for the ordinary wave, figure 13. For some hybrid frequencies
two integer subscripts are used as explained under (¢) below.

The following list gives the main properties of the various transition frequencies.

(a) Cut-off frequencies

When o decreases and passes through one of the cut-off frequencies w, or w_, §8 (iii), one of
the refractive index surfaces shrinks to zero and becomes imaginary. For any cold plasma there
is only one value w, which is the greatest cut-off frequency for the extraordinary wave. The
number of values of w_ is equal to the number of positive ion species, including ions of infinite
mass, if any are assumed to be present. For a plasma with only one positive ion species the one
value of w_ gives cut-off for the extraordinary wave, figure 14. For a plasma with more than one
positive ion species, the ordinary wave can also show cut-off of this kind. See, for example,
figure 22.

It can be proved that each cut-off frequency must always be at the lower end of a frequency
range where n(6) is real.

(8) Cyclotron frequencies

Theion cyclotron frequencies are usually denoted by £; (§2) but when there is only one, 2 is
sometimes used, or when reference is made to a specific ion then, for example, 2(Het) may
be used.

When o = wy equation (5) shows that e, is infinite, and when v = Q; (= Q4) then e_ is
infinite, In all these cases (44) and (45) show that there is a resonance where § = 0, # = + in.
When o changes and passes through a cyclotron frequency, two different types of behaviour
can occur. The first is for the extraordinary wave when ¢, is positive. It can only happen at the
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electron cyclotron frequency wy and only when w, < wy, figure 12g. Then when o is slightly
less than wy; and close to it, the refractive index surface is closed and has the large value n = (e, )%
where 6 = 0. It has a Storey cone at 6 = 0y, f = f;, where 6, is small and f, is near n.
It also has a reversed Storey cone at 0 = 05, f = fgs. When v —>wy then 6, -0 and S > in.
The £(6) curve moves to a limiting curve shown as a chain line in figure 12¢. This is made up
of the line segment § = 0, 0 < £ < 3=, together with the curve marked w in figures 12g and A.
The equation of this curve can be found from (35) and the dispersion relation. When o slightly
exceeds wy, this refractive index surface is open and has a real reversed resonance 6, which is
small, with f, slightly greater than }r, and the Storey cone has disappeared, but the reversed
Storey cone remains, figure 124. The #(6) curve crosses the line # = in where 6 is small and
meets the resonance line at 6, £,. Thus the transition of w through the electron cyclotron fre-
quency is where a reversed resonance appears, and a Storey cone disappears.

The second type of transition occurs when ¢4 is negative at a cyclotron frequency. When there
is only one positive ion species it occurs only for the extraordinary wave, but for more than one
it occurs also for the ordinary wave. When w is less than this cyclotron frequency and close to it,
the refractive index surface has a resonance cone with small 6, and with #, = —In+6,. The
associated branch of the £(6) curve, figure 125, runs steeply from 6 = 0, # = 0 to the resonance
line where 6 = 6,, # = —4n+6,. When o equals the cyclotron frequency this branch moves to
coincide with the line segment 6 = 0, —4n < # < 0. When w exceeds the cyclotron frequency
the refractive index surface and the £#(6) curve are no longer real. This type of transition occurs
at = wy only if w, > wy and then for the ordinary wave. It occurs also at all ion cyclotron
frequencies 2,. For the greatest £, it is for the extraordinary wave and for successively smaller
£, it is alternately for ordinary and extraordinary.

(¢) Hybrid frequencies
Frequencies for which e, +e_ = 0 are called hybrid frequencies. The greatest of them wy, is
the upper hybrid frequency. It is mainly associated with the electrons and is given approximately

by

vy & (0l + 03k, (112)

For this frequency, e; > 0. The next greatest is denoted by wy, and is called the lower hybrid
frequency. It satisfies £2; € w;, < wy for all ion species 7, and it is given approximately by

0y, = {(SCir) ke / (Ghr+ o) (113)

(notation as in §1). The other hybrid frequencies are denoted by wy 5, W g, ... and are called
ion—ion hybrid frequencies. It can be shown that wy; ;. is between 2; and 2, ,,. Thus the total
number of hybrid frequencies is equal to the number of ion species, including electrons. At all
of them (44) and (46) show that there is a resonance where 6 = +in, f = 0 or n. All of them
except wy occur where €5 < 0.

When o is slightly less than the upper hybrid frequency w, the refractive index surface for the
extraordinary wave, figure 12 has reversed resonance cones where 0 = in+yand f = ¢, n— ¢
where ¥ is a small angle. One branch of the £(8) curve runs steeply from 6 = =, # = 1= to the
resonance line where 6 = {n—, f = n—3. When v = wy, the whole of this branch moves to
coincidence with the line segment 6 = }=, 47 < # < n. When o is greater than wy, this £(0)
curve is no longer real.
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For the lower hybrid resonances, the behaviour is different. When there is only one positive
ion species, it occurs only for the ordinary wave. When w is on one side of w;, where e, +¢_ < 0,
and close toit, one refractive index surface is closed and has the large value n = {2¢,e_/(e, +€_)}}
(see §8) where @ = 4n. It has a reversed Storey cone at 6 = 0y, # = f5; where 0, is near in
and f, is near 0. It also has a Storey cone at 0 = O, f = f. When w—>wy;, then 64 —0
and B, —4n, and £(6) moves to a limiting curve, figure 115, running from 6 = 0, # = 0, to
0 = 4m, f = 0 (Al'pert 19804, equation (37)) together with the line segment 6 = 4n, 0 < f < ir.
When v is on the other side of wy, this refractive index surface has a real resonance 6, slightly less
than 4m, with f, negative and small, and the real reversed Storey cone has disappeared, but the
Storey cone remains. The £(6) curve, figure 11¢, crosses the line # = 0 where 6 is nearly =, and
it then meets the resonance line at 6,, f,.

(d) The window frequency

The window frequency w, is where €; = 0. Here the properties of the refractive index surfaces
and of #(0) are determined mainly by the electrons. When o slightly exceeds w,, the () curve
for the ordinary wave figure 11¢ is monotonic and has no resonance. When w decreases to v,
this curve approaches the two straightlinesegments @ = 0, —3n < f < irand f = in,0 < 0 < }n.
When o < w, the ordinary refractive index is real only if w, < wg, figure 11d, and the wave is
then the electron whistler mode. There is a resonance where 6 = 8, is small and £ is close to — 3=.
The $(0) curve has a large negative slope at @ = 0, and runs steeply down to the resonance line.
For 6 > 6, the refractive index 7 is imaginary.

For the extraordinary wave, when o < w,, the #(6) curve is as shown in figure 124. There is
no resonance, but there is one turning point corresponding to a Storey cone where z < 1. When
w increases to w, the #(6) curve approaches the two straight line segments = f, and 6 = 0,
—34n < # < in. When v > o, the behaviour depends on wg. If wy > o, the £(0) curve is as in
figure 12¢. There is no resonance, but there are two turning points giving a Storey cone and a
reversed Storey cone, both where n > 1. If wy; < w, the £(0) curve is as in figure 12%. There is a
reversed resonance at 6, £, and 6,—0, .- in when > w,. There is also one turning point
giving a reversed Storey cone with n > 1.

(¢) Storey cone appears at 6 = 0
It was shown by Walker (19774) that when o passes through a value wg which makes

(3+6.) (65+6.) = 0, (1)
one of the refractive index surfaces n(6) has a point of inflexion at # = 0. When w is on one side
of wg there are no real points of inflexion. When it is on the other side there are two real points
ofinflexion for equal and opposite values + 6, of 6, and these lie on a Storey cone, where f# = + f,.
If 04/00 is negative where 6 = 0, then f; and 6, have opposite signs as in figure 124. If it is
positive, f; and 6, have the same sign, as in figure 11¢.

(f) Reversed Storey cone appears at 0 = in
It was further shown by Walker (19775) that when w passes through a value wg which makes
(63— €xg) {€+ €_(63+6€44) — 263'3?6&:} =0, (115)

one of the refractive index surfaces #(6) has a point of inflexion where § = n. When w is on one
side of wy there are no real points of inflexion. When it is on the other side there ar¢ two real
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points of inflexion for equal and opposite values of 3n — 6 and these lie on reversed Storey cones
where f# = f; and }n — f;. The behaviour of the £(0) curves is shown in figures 12 (4, ¢, k). For the
proton plasma there is only one example of this transition. It occurs for the extraordinary wave,
figure 14 and there it is the second factor of (115) that is zero. There is another real frequency,
where the first factor is zero but the associated point of inflexion occurs in the 7(6) curve for which
n is imaginary when 6 - }x.

(g) Storey cone and reversed Storey cone appear where 6 # 0 or in

One of the refractive index surfaces n(0) can have two coincident real points of inflexion at
some 6 in the range 0 < 6 < }n, when w has a value wgrg. There is no simple formula for this
condition. When w is on one side of wgg thereis a real Storey cone and a real reversed Storey cone
for values of § in the same quadrant of the refractive index surface. These move to coincidence
when w— wgg, and become complex when v is on the other side of wgg. At this transition the
B(0) curve has a point of inflexion where the gradient is zero. Examples appear in figures 114, b
and 12 (e-g).

(h) Field enhancement on the axis

If enhancement of the field on the z axis is to occur, as described in § 7, it is necessary that the
refractive index surface shall have a normal parallel to the z axis for 6 # 0. Thus the £(6) curve
must cross the line # = 0 where 6 # 0. This means that (85) must have a solution that leads to a
real non-zero value of 6. The transition to this state occurs when (85) has a solution giving 6 = 0,
namely 7% = ¢, or e_. Hence the transition occurs when

€= te, or €= te_. (116)

These conditions with the — signs are the same as conditions (114). The 4+ signs are of no
practical interest because then (116) is only satisfied when €, or e_ is negative so that z is imagin-
ary. The transition could also occur when (85) has two equal solutions both giving a real non-
zero value of . This requires that the discriminant of the quadratic (85) shall be zero, but this
is only possible if 8 = 0, or if €5 = 0, that is at the window frequency. Thus the transition only
occurs when o is wg or w,,.

(¢) Crossover

The crossover frequency w = . is where €, = e¢_ (97). No examples of it appear in figures 11-14
because these apply to a plasma with only one positive ion species. It was shown in §8 (viii)
that one refractive index surface does not change its topology when w passes through .. The
other has a Storey cone at 6 = 6 (w) for both & > v, and ® < wg,. In the limit w - wg,, 0
tends to zero and the Storey cone is then absent, but the 7(6) curve does not have a point of
inflexion at 6 = 0 and the £(6) curve has non-zero gradient at 6 = 0. If this surface is the outer
refractive index surface (§8 (viii)), the #(6) curves are of the form in figure 11¢. Ifit is the inner
refractive index surface, they are of the form in figure 12d. This applies in both cases for o less
than or greater than w,,. But the limiting curves are not the same as the curves wg,, wg, respect-
ively. Thus w,, is not a real transition frequency. The #(6) curves move to a limiting form but
do not pass through it.

The foregoing theory has shown that the topology of the refractive index surface and the ray
surface, and the form of the #(0) curve, change when w goes through any of the transition fre-
quencies w,, 0_, O, 2;, Oy, Wy, O, Oy, Wy, Wry. For a homogeneous plasma there is only one
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value of each of w,, wy, wy, w, but the other six may have more than one value, depending on the
number of ion species and their concentrations. The ascending order of these transition frequencies
is not the same for all plasmas. Some examples are given in later sections.

10. RESULTS FOR A FULLY IONIZED COLD PROTON PLASMA

Results will now be given to illustrate some of the main properties of the formulae derived in
earlier sections. The curves given here show the dependence of

IEI = {lExlz"'lEyIz"'IEzlz}%’ (117)

on frequency f and on ray direction . They were computed from &; (j = 1, 2, 3) as given by the
formulae (79) for f# near a Storey cone or reversed Storey cone, by (89) for the enhanced fields
near the axis, and by (39) when £ is not near either of these field enhanced regions. When 2 is
near a resonance or reversed resonance cone (39) can still be used (§5). In the expressions the
factor Mk3/4me, is omitted for simplicity (see §3). For the same dipole source in free space the
corresponding radiation field, again with the factor Mk3/4ne, omitted, would be

Ey = (kr)~tsin fe-ikr;  |E| = (kr)~'sinf, (118)

which is useful for comparison.

The properties of a plasma are different for the two cases wy > wy and wy < wg. Results are
therefore presented for wy/wy = 2.0 and wy/wy = 0.3. The properties of either of these two
proton plasmas can be summarized by constructing a chart which is a cross section of figure 13,
ordinary wave, and figure 14, extraordinary wave, for a fixed wy. The chart for wy/wy = 2 is
shown in figure 15, and for wy/wy = 0.3 in figure 20. These charts apply for a collisionless
plasma. The results that follow are for a plasma with collisions, but the charts are still useful.

(a) Proton plasma with wy/wgy = 2

An example of how | E| depends on f at a fixed frequency, f = 2.4 x 10% Hz, is shown in figure 16,
which combines features already shown separately in figures 2, 4, 5, 8 and 9. Figure 15 shows
that at this frequency the extraordinary wave is cut off (evanescent) for all ray directions f.
The ordinary wave is the electron whistler mode and it too is cut off for all B greater than the
resonance cone angle £, ~ 13°. The £#(0) curve is of the form shown in figure 11¢ or 124. There
are three (or less) contributing saddle points, and where they are well separated in the complex
n, plane, their contributions are shown separately as long dash lines. Where two of them are
close together, their contributions are combined to give the field enhancement near the axis, or
the Storey cone. These are shown as continuous lines. The effect of the collision frequency
ve = 10051 on these curves is very small. Part of the curve for no collisions is shown as a short-
dash line.

Also shown, as a chain line, is the field (118) that would be observed at the same range for a
dipole source with the same moment A in free space. This shows that there is a field amplitude
enhancement of about 10 times at the maximum of the Storey cone, and about 5 x 10 times at
the resonance maximum. It should be remembered, however, that this dipole in free space
requires very much less power input than a dipole with the same moment M in the plasma. This is
because immersion in the plasma greatly increases its radiation resistance. For the example of
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proton plasma wy/wy = 2
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Ficure 15. Chart for a cold, fully ionized, loss free proton plasma with wy/wy = 2.0. The upper and lower strips
refer to the ordinary and extraordinary waves respectively, and the shaded parts show where these waves are cut
off (evanescent) for all real wave normal and ray directions. The transition frequencies marked at the top are defined
in §9. The frequency scale is divided into sections and is linear in each section. The horizontal lines show the
frequency ranges where the various features of the field (FE: field enhancement on axis; res: resonance) as indicated
at the left, are present. The numbers above and below them give the values in degrees of £ and 0 respectively at the
ends of the ranges.
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figure 16, the radial component I7, of the time averaged Poynting vector was calculated as
explained in §§4-6, and a rough graphical evaluation of the integral

3n
P= 4nf I, sin fdpf (119)
0

was used to estimate the power input P. It was found that if the comparison dipole in free space
was fed with a power P, its moment M would have to be increased by a factor of approximately 40,
and the ordinates of the chain line in figure 16 would have to be increased by this factor. The
field enhancement factor at the resonance would then be only of order 103, and the field at the
maximum of the Storey cone would be less than one third of the value in free space.

Another example of the # dependence of |E| for the same plasma is shown in figure 17. This
also is for the electron whistler mode, at a frequency f = 1.1937 x 10* Hz and figure 15 shows
that here again the extraordinary wave is cut off for all . The ordinary wave is not cut off for
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Ficure 17. Results for the same plasma as in figure 16 but for a frequency 1.1937 x 10¢ Hz. Here there is no
resonance, but there is a Storey cone at § = 19.88° and a reversed Storey cone at f = 6.34°. Figure 17 (a)
shows the general behaviour and figure 17 (b) shows the details near the cones. The meaning of the various
curves is as given in the legend for figure 16.
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any f. The #(0) curve has the form of figure 115. There is no resonance cone, but there is a Storey
cone and a reversed Storey cone. The smallness of |E| as # approaches 90° occurs because the
refractive index surface there has a very large curvature, so that the slope of the #(6) curve is
large there.

Further curves for this plasma showing the £ dependence of | E| near a Storey cone are given
in figures 4 and 5. The behaviour of the time averaged Poynting vector near a Storey cone is
illustrated in figure 6.

(a) (b) ()
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0.1
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0.04 \ [6.1 73.2
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Ficure 18. Dependence of |E|, equation (117), on frequency f at the maxima of resonance cones in a proton
plasma with fy = 2.3874 MHz, f5; = 1.1937 MHz and electron collision frequency v, = 100 s~ In (2) and
(¢) the frequency scale is linear and in () it is logarithmic. The numbers by the curves are the values in
degrees of the ray direction f at the maxima of the cones. The marked frequencies are the proton gyro
frequency Fy, the electron gyro frequency fy, the lower and upper hybrid frequencies f,, fy, respectively and
the window frequency f;. Curve (a) is for the extraordinary wave: the Alfvén wave or proton whistler, (b) is
for the ordinary wave: the electron whistler, and (¢) is a reversed resonance for the extraordinary wave, Z mode.
For (a) the range from source to receiver is 200 km. For (b) and (¢) is it 100 km. Comparison values of |E| in free
space, equation (118) are as follows. For (a) 4.4-5.2x 10-3. For (b) 4.0-4.5 x 104, For (¢) 1.0-1.9 x 104,

Figure 15 shows that there are three frequency ranges where a resonance cone is present. One
is for the ordinary wave in the range w;, < @ < wg and this is the electron whistler mode. The
other two are for the extraordinary wave. One of these is for < 24, the Alfvén wave or proton
whistler. The other is a reversed resonance for the Z mode where w, < w < wy. Figure 18 shows
the frequency dependence of |E| at the maximum of the resonance cone for these three waves.
The values from (118) for a dipole in free space are also given, in the caption, for comparison.
It should be remembered that the factor Mk?/4mne,, proportional to the cube of the frequency,
is omitted. For any practical study the source dipole moment A would probably depend on
frequency in a complicated way depending on the exact type of transmitting aerial used, and on
its radiation resistance. The chief interest of the curves of figure 18 is to show the behaviour near
the ends of the frequency ranges, and for comparison with other plasmas, figures 23 and 24. Thus
figure 184 shows that the amplitude enhancement factor is large, about 105 at extremely low
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frequencies and decreases to 10% or less as fapproaches the proton gyro frequency Fy,. In figure 185
the enhancement factor is 5 x 102 to 5 x 108 and decreases at both ends of the frequency range
Ju <JS <fu-Figure 18¢is similar with an enhancement factor 102 to 2 x 103, showing a decrease at
the ends of the range f, < f < fy.

Figure 15 also shows that there are three frequency ranges where a Storey cone, a reversed
Storey cone, or both are present. These are for the same waves as in figure 18 but for slightly
different frequency ranges as follows:

ordinary wave: wgy < @ < wg,. This range contains the lower hybrid frequency oy,

extraordinary wave (Alfvén wave): o < wg;. Here wyg, is less than but very close to 2. The
values in the example of figure 19 are: wg, = 257.227rads™1; Q = 257.253rads™1.

extraordinary wave (Z mode): wg; < @ < wg. This range contains the window frequency w,.
Figure 19 shows the frequency dependence of | E| at the maximum of the cones for these waves.

Where the abscissa fin figure 19 is near to frg (@ near to wgg), the ray direction S at the
maximum of the Storey cone and reversed Storey cone are close together. This means that there
are three saddle points close together in the 7, plane. The formula (79) used for figure 19 makes
use of two of these saddle points and it is implied that there is no other nearby saddle point. This
assumption fails when fis near to fyg, so that the curves at this point must be treated as approxi-
mate only. Similar caution is necessary near the other transition frequencies fy, f1.,, fs2> fs3 fo
and f5. In these regions the curves are shown as dotted lines.

Figure 19 shows that the amplitude enhancement factors for Storey cones and reversed Storey
cones are much less than for resonance cones (figure 18) and often they are less than unity. But
the decrease at the ends of the frequency ranges is less marked or absent. When the frequency
approaches the lower hybrid resonance fj,, the signal amplitude | E| for the reversed Storey cone
tends to a large value and the dipole radiation in free space is weak because f— 0. These two
effects together mean that the enhancement factor is of order 105,

Figure 16 shows at # & 0.025°, an example of the enhanced value of | E| near the direction of
the magnetic field B, thatis, in this case, near the axis # = 0 of the dipole source. Other examples
for the same plasma were given in figures 8 and 9. These two figures also show the behaviour of
the time averaged Poynting vector.

Resonance cones, Storey cones and reversed Storey cones occur at values of # which are
approximately independent of the range from source to receiver. For them it is useful to compare
the values of | E| with the values for the same dipole and the same direction in free space, as has
been done earlier. But the axial enhancement of |E| occurs at a roughly constant distance from
the z axis and therefore with a ray direction g = f, say, which is inversely proportional to the
range. It is misleading to compare the axially enhanced |E| with the value in free space at this
variable value f,. Instead we compare it with the | E| in free space at the same range and in the
direction of the dipole’s maximum radiation (that is, in the present example, at # = 90°). The
enhancement factors for the three examples mentioned above are then as follows:

range from distance of
source to maximum amplitude
frequency, receiver, from axis, enhancement
f/Hz z/km x/m factor
figure 8 2.984 x 10* 100 30 1000
figure 9 2.268 x 108 200 80 67
figure 16 2.4 % 10 100 44 100

39 Vol. 309. A
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If the axially enhanced | E| is compared with the free space | E| at 8 = f,, the above enhancement
factors would have to be multiplied by z/x that is about 2000~3000. The resulting factors are then
very large but this is not a property of the plasma. It occurs rather because we happen to have
chosen a source dipole that radiates very weakly in free space for directions near to B.

proton plasma wy/wy = 0.3
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8 ‘2 Ficure 20. Chart similar to figure 15 but for a cold, fully ionized, loss free,
=% proton plasma with wy/wy = 0.3.
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o ) Ficure 21. Dependence of |£]|, equation (117), on frequency f at the maximum of the Storey cones, marked SC, and
I= the reversed Storey cones, marked RSC. See legends for figures 16 and 17. These results are for a tully ionized
S cold proton plasma with wy/wy = 0.3 and with v, = 100 s~L. They apply for the extraordinary wave, Z mode.
ol p p N/ ®Op
A 5 0 The cones occur in two separate frequency ranges with a gap between them (see figure 20). Where the curves are
o dotted the formulae are unreliable because too many saddle points of the integrand of (41) are close together.
='§ The transition frequencies (see figure 20) beyond the left and right of this figure are fy = 2.76 x 10° Hz and
E - Jr = 1.1986 x 10® Hz respectively.
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(b) Proton plasma with wy/wy = 0.3

Figure 20 is a chart showing the transition frequencies for this plasma. Comparison with
figure 15 shows that there are again three frequency ranges where a resonance or reversed
resonance is present. The one for the Alfvén wave, w < 24, is the same as in figure 15. For the
ordinary wave, electron whistler, the range is now w;, < @ < w, with upper limit w, instead
of wy. For the reversed resonance in the Z mode the range is wy < @ < wy; with lower limit g
instead of w,. Apart from these changes there is little difference between the general properties
of the resonance and reversed resonance cones for the two plasmas.

Similarly the Storey cone for the Alfvén wave with @ < wg;, and the Storey cone and reversed
Storey cone for the electron whistler wave, wpg; < @ < wg,, have similar properties to those for
the plasma of §10 (a). For the Z mode however, figure 20 shows that there are now two separate
frequency ranges wgg < @ < wgg, containing the window frequency w,y, and wggs < @ < W
containing the electron gyrofrequency wy, where a Storey cone or a reversed Storey cone or
both occur. Some results for these cones are shown in figure 21.

11. RESULTS FOR A FULLY IONIZED COLD PLASMA
WITH THREE POSITIVE ION SPECIES

In this section we give results similar to those of §10 but for a plasma with three species of
positive ion, namely protons, singly charged helium ions and singly charged atomic oxygen ions.
It is possible to construct diagrams of C.M.A. type for this plasma similar to figures 13 and 14,
to show the various transition frequencies. It is found, however, that transition frequencies less
than Q2(H*) are almost independent of the electron plasma frequency, equivalently of w,. Thus
they would appear as nearly horizontal lines in the lower parts of the diagrams. The upper parts
of the diagrams are closely similar to figures 13 and 14. Figure 22 is a chart similar to figures 15
and 20 which shows the location of the transition frequencies for the three ion plasma. It is for
wy/0y = 2.0 but, for those transition frequencies less than 2(H*), it would apply equally well
for any other value of wy/w;; in the range 0.1-10.0. It can therefore be used to show where the
horizontal transition lines would appear in the lower parts of the C.M.A. type diagrams.

Many of the properties of waves in this plasma are similar to those for the proton plasma, §10.
For example curves of |E| against frequency for the maximum of the resonance cone show an
amplitude enhancement factor of order 10%-10%, but with a decrease as the ends of the frequency
range are approached. There is an example in figure 23 as f— F(Het). For Storey cones and
reversed Storey cones the enhancement is smaller and often less than unity. But for the reversed
Storey cone in figure 24 (compare figure 195) it tends to a large value as f—/}, , (the smaller
ion-ion hybrid frequency), and for the Storey cone in figure 24 it tends to a large value as

f—F(Het) (the helium gyro frequency).

The new features that appear for this plasma are the two crossover frequencies w.,; and
W¢ro. Figure 22 shows that w,; occurs for the ordinary wave and ., for the extraordinary
wave. The results now to be given are designed to show the behaviour of the waves for » near to
w¢ry- The behaviour for w near to w,, is very similar.

The properties of the two refractive index surfaces and their () curves for w at or near
crossover were given in §8(viii). In the present example it is found that, at both crossover fre-
quencies €, + €3 < 0, and this is likely to apply for nearly all multi-ion plasmas encountered in
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550 YA. L. AL’PERT AND OTHERS

practice. Thus the outer refractive index surface has a Storey cone at # = f for  on either side
of v, and f;— 0 when w — w,,. This surface also has a resonance, and is a hyperboloid at exact
crossover. It is associated with field enhancement near the axis, §7, when o # o,,. This is con-
firmed by figure 22; near crossover, the Storey cone, the resonance and the field enhancement
occur for the same wave. For this outer surface, at exact crossover, the waves are linearly polarized
with the electric vector in the plane ¢ = constant.

The inner refractive index surface is a sphere at exact crossover, and the polarization is then
linear with the electric vector perpendicular to the plane ¢ = 0, and therefore perpendicular to
the source dipole which is parallel to the z axis. This wave cannot, therefore, be excited by the
source at exact crossover, and the degree of its excitation would be small when o is near to w,.

The equation (34) for finding the saddle points can be expressed as an equation of degree six
for n% (Budden & Stott 1980). Let

Q=1e.—c) = —ie,, (120)
Then, near crossover, @ is very small. If (120) is substituted in the sixth degree equation, and it
is then expanded in powers of @ as far as Q2 the result is, after cancellation of some non-zero
factors:

(nz - e:c:c) 5 (emz - 63) €re {e:m(n2 - 635:0) cos? ﬂ €3 (n2 - 63) sin® ﬂ}
+ (nz - em:c)s Qz{emm(nz - eac:c) cos? ﬁ(2n2€xx - 26:% - 56.?01: + 363 ex:c)

+ €5(n? — €3) sin? B(5n2e,, — n2e; — 362, — €36,,)} = O. (121)

There are no odd powers of @ in this expansion. The full expansion contains terms in @* and Q¢
but they are very complicated. The solution n? = ¢, of (121) corresponds to the inner and
spherical refractive index surface. For this surface, for any value of /3, there are three coincident
solutions and therefore the integral (32) has three saddle points, which are near together for o
near to ., and coincident at exact crossover. This means that the method of steepest descents
as expressed by (39) cannot be used for this inner surface. In the present study with a dipole
source parallel to the z axis this is unimportant because the wave is not excited or only weakly
excited. For a different source, for example an electric dipole perpendicular to the z axis, the
wave is excited and a more elaborate treatment of the integral (32) is needed. This problem has
been studied by Stott (1982).

The remaining three solutions of (121) correspond to the outer refractive index surface (104),
which has the general shape shown in figure 14. The full sixth degree equation (but not the
approximation (121)) shows that two of these solutions are equal when # = 0, and these two are
associated with the field enhancement on the axis, §7. When £ # 0 the three solutions are, in
general, distinct but two of them move to coincidence when £ is on a Storey cone.

The results presented here cover the frequency range 90-163 Hz which is between the gyro
frequencies of the oxygen and helium ions. They are designed to show the effect of crossover,
at 146.59 Hz, on the resonance cone, figure 23, the Storey cone, figure 24 and thefield enhancement
on the axis, figure 25. A very small collision frequency was used, v, = 1.0s~! with all other
collision frequencies equal to zero. At these low frequencies this is sufficient to ensure that (54)
was satisfied at resonance for most of the frequency range studied. A range r = 5000 km from the
source was used so that &r & 9-17. This was to ensure that the saddle points are sufficiently well
separated in the 7, plane even when | — w,,| is small.

Figure 23 shows how | E| depends on frequency for the maximum of the resonance cone. The
values of 3, shown by the curve, are very small so that 0 is near to 90°. Here the dipole source
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radiates strongly. At all frequencies in this range, whether or not they are near crossover, the
behaviour near resonance is normal and similar to that shown in figures 16 and 18. There is no
deviation of the curve where it passes through the crossover frequency.

10®

10°

|E| 10

10°

10" 1 1 1 1 |
110 120 130 140 150 160
frequency/Hz

Ficure 23. Dependence of |E|, equation (117), on frequency f at the maxima of resonance cones in the plasma
with three positive ion species as described in figure 22. The electron collision frequency is ¥, = 1 s~ The
range from source to receiver is r = 5000 km. Other features are the same as in figure 18. The frequency
range used here contains the crossover frequency f,,,.

107 t
S sC
T~ 8C |
Ny T -
10° By T~
3 ~, 5
10~3‘f}zs i b v /(fs '
N I A ‘ // e
10—4 - 1.28
o SC
. 20.00 17.75 15.65 13.15 6%
10 6.85\\ '/
108 ‘ l |
100 120 140 160
frequency/Hz

Ficure 24. Similar to figure 23 and for the same plasma and the same value of 7. The |E| values are at the
maxima of the Storey cone, marked SC, or the reversed Storey cone, marked RSC. Other features are the
same as in figure 18.

Figure 24 shows the frequency dependence of | E| for the Storey cone. There is also a reversed
Storey cone for the lower part of the frequency range but this is not near crossover and the
behaviour is similar to that already described and shown in figure 194. For the Storey cone the
values of f; and 6, both approach zero as | — w,,| = 0. The dipole radiates only weakly where
0 is small and this explains why the signal amplitude is small near crossover. The comparison
signal (118) for a dipole source in free space is also shown. This gets small at crossover because
there the factor sin £ tends to zero.
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552 YA.L. APERT AND OTHERS

Figure 25 illustrates the field enhancement near the axis. It shows how |E| depends on
distance x from the axis for various frequencies. At exact crossover, where ¢, = 0, (86) shows that
n, = nsinf = 0 so that @ = 0 and the wave is not excited by the source. Thus no curve for exact
crossover can appear in figure 25. Curve b is for a frequency very close to crossover and shows
that the excitation is small. The other curves show that the excitation gets larger as the frequency
gets further away from crossover. Even with this weak excitation the amplitude at the first
maximum is enhanced as compared with the signal at the same range for the same dipole in free
space in the direction of its maximum radiation. For the curves of figure 25 the enhancement
factors are: a, 50; b, 1.3; ¢, 100; d, 500.

AV

|E| 107 ° \ /

107 /—.”b/ /‘hL"

10° . . .

0 0.5 10 15 20 2.5
distance, x/km

Ficure 25. Field enhancement near the axis for various frequencies on both sides of the crossover frequency

Soer = 146.59 Hz. The plasma is the same as used for figures 23 and 24. The distance z from the source is

5000 km. Other features are the same as for |E| in figures 8 and 9. The frequencies used here are: curve a,

144.90 Hz; curve b, 146.50 Hz; curve c, 152.05 Hz; curve d, 162.31 Hz.

The oscillations of the curves in figure 25 are caused by the Bessel functions that appear in
(89) through the factor g; (28). The argument £ (26), of these Bessel functions is proportional to
n, as given by (86) and gets larger as the frequency f moves away from crossover, so that the
period of oscillation gets smaller.

12. CONCLUSION

In this paper we have tried to illustrate the physical nature of the radiated field from the
source dipole, and particularly those features of it which arise from the properties of the plasma
itself. The results of outstanding interest are the three types of signal enhancement. These occur
in directions and at frequencies which are determined by the plasma and not by the nature of
the source. In future work it would be interesting to use other types of source such as a magnetic
hertzian dipole, or an electric hertzian dipole perpendicular to the magnetic field, with the
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formulae of Appendix B; Stott (1982) has made a start on this. It is also desirable now to extend
the theory to deal with situations where three saddle points are close together. This has already
been done for another problem (Budden 1976). Its application to the present theory would
simply involve the working out of the rather complicated algebra.

The Cambridge authors are indebted to the Cambridge University Computing service. One
of them (G.F.S.) was supported by the Science and Engineering Research Council.

APPENDIX A. EFFECT OF COLLISIONS IN A COLD MAGNETOPLASMA
CONTAINING POSITIVE IONS AND NEUTRAL PARTICLES
(a) Object

This appendix describes how the effect of collisions is incorporated when allowance is made
for the relative motion of the various species. It is based on the method described by Al’pert
(1980b). We study a homogeneous plasma which contains electrons, three species of positive ion,
and neutral particles, and their properties are indicated by using subscripts e, 2, 3, 4, n. This is
convenient in the matrix operations. Thus we may think of e as the same as 1, and n as the same
as 5. The particles have masses m,;, concentrations N; and velocities v;, where v, is the average
drift velocity of species ¢ caused by the electromagnetic field and by collisional forces. The
effective collision frequency of particles : with particles j is v;; where ¢, j can be any of ¢, 2, 3, 4, n.
In the actual calculations 2 refers to protons, 3 to singly charged helium ions and 4 to singly
charged oxygen ions.

We do not here consider collisions of particles with their own kind. This is a separate effect,
sometimes called electron or ion viscosity that requires different treatment (Akhiezher ef al.
1976; Al’pert 19805).

(b) Collisional forces

The average force exerted on one particle of species ¢ through collisions with particles of

species j is assumed (Stix 1962) to be

—mv(v,—v;). (A1)
Thus the rate of transfer of momentum to the particles ¢ in unit volume, from particles j is
= Nym;vy;(v;—v). (A2)

This must be equal and opposite to the rate of transfer of momentum to particles j from particles s,
which requires (Stix 1962) that

Nymyvy; = Nymyvy,.

(A3)
In the present study it was thought to be interesting to allow neutral particles to be present,
because they can affect the properties of some plasmas, and for very low frequencies their move-

ments are important. This is discussed by Hines (1963).

(¢) Massive ions

Since the plasma must be neutral, the sum of the concentrations of all the positive ions must
equal N,. It is often assumed that a plasma contains positive ions that are so massive that they
cannot move and therefore cannot contribute to the electric permittivity. They serve only as a
charge neutralizing background. If their concentration is N, then neutrality requires that

Ne = Ny + N3+ N, + N,,. (A4)
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Let the effective collision frequency for an electron, or ion of species ¢ with a massive ion be v;,.
Then the average force exerted on the ion through collisions is

— M V0, (A 5)
This is simpler than (A 1) because v, must be zero. It is the same as the expression used in the
older theories where relative motions of the particles were ignored. By itself it would lead to the

idea of treating collisions by using a complex mass for each particle. This idea is used for most of
the results given in the main part of this paper. Thus v,,, vy, etc. are the same as v,, v, etc. of §2.

(d) Outline of the method

We use cartesian coordinates x, y, z. The constant magnetic field B is parallel to the z axis.
Each velocity o; has cartesian components v;,, v;,, v;,. An electric field Eel“’ is present. It is
required to find the electric permittivity tensor € of the plasma, (1). This is done by finding its
three diagonal elements (4) in the complex principal axes. The method is to formulate the linear
equations for the velocities v;. These are then transformed to complex principal axis coordinates.
In these coordinates the equations for the three sets v;_, v;, and v;5 (with ¢ = e, 2,3,4,n) are
separate and independent of each other. Each of them can therefore be solved by matrix
inversion. From the solutions the principal axis components P_, P,, P, of the electric polarization
P = ¢, (e — 1) E are found. This leads at once to expressions for e_, ¢, €;.

(€) Detailed derivation
The equation of motion of an electron is
iwm,v, = —¢E—ev, A B
; - me{ve2(ve —0y) + Ve3(Ve — V3) + Vos(Ve — 0y) +Ven(Ve — 0n) +Vep V). (A 6)
The equation of motion of an ion of species ¢ (= 2,3 or 4) is

iom; v; = ¢E +ev; A B—m;{v;e(v;—v,) + é‘, Vij(0; —0;) + Vi (0, — 0p) +Vip 0.} (A7)
j#i

Finally the equation of motion of a neutral particle is

iwmn Up = — mn{Vne(vn - ve) + ‘:‘3 Vm‘(vn - 'vj) +Vnn vn}' (A 8)

These three equations for the vectors » may be written in matrix form by treating the cartesian
components v,, v,, v, as a column matrix. The equations then contain matrix products of the
form Mo where M is 3 x 3. The matrices M can all be diagonalized by the same unitary trans-
formation (3) to new complex coordinates, called ‘principal axis coordinates’. The principal
axis values for any o in these coordinates are denoted by v,, v_, v5. Then the required trans-
formation is

Uy 1/*/2 1/\/2 0 Uy (v:c+ivy)/\/2

v_|=|1/J2 —i/y2 off|v,| =] (v,—1v,)/V2], (A 9)

Vg 0 0 1o, v
where any subscripts e, 2, 3, 4, n can be used on the quantities . The same transformation gives
the principal axis values E,, E_, E; of the electric intensity E. The cartesian components of the

4

vector v A B are B(v,, —v,,0). Its principal axis components are
(v, —iv,) /2 vy
B|(v,+iv,)/y2| = —1B| —v_]|. (A 10)
0 0
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If these results are now put into (A 6), (A 7), (A 8) we obtain three sets of equations, one for the
v,, one for the v_ and one for the v3. The equations for the v, are

iwmyve, = —eE, +ieBv,,
— Me{Vea(Ver — Vo) + Ves(Ver — V31) +Vea(Ver —Vsy) +Ven(Ver = Vni) +VenVers (A 11)

lom;v;, = eE, —ieBv;, —m;{v;e(v;y —vey) + Ei Vij (Wi = 54) +Vin(Vip —vny) +vintis}, (A 12)
iwmyvyy = —Mp{Vne(Vay — Vo) + z Vi (Vn+ —Vj2) +Vantnits (A 13)
j

for ¢, j = 2,3, 4. From these, the equations for the v_ are obtained by replacing all subscripts
+ by — and changing the sign of B. The equations for v, are obtained by replacing all sub-
scripts + by 3 and omitting the terms containing B.

Now for each v let _ © = ior. (A 14)

The same subscripts and superscripts are used on the symbol r as for the symbol ». Divide
each equation (A 11)—(A 13) by —wm where m has the appropriate subscript. Use

eB/m, = 2,, eB/m; = Q; (angular gyro frequencies).
Rearrange the equations to obtain
Ter{@— Qe —1(Veg+ Veg+ Vea+Ven+Ven)} +i{Vearar +VesTsr +VeaTar +VenTnr) = €E,/om,, (A 15)
rifo + Q2 —i(vie +j§i Vij+ Vin +Vin)}
+YVeTer +j§i VijTir +VinTny) = —eE Jom; for i,j=23,4, (A16)
@ = 1(7ne + X vns - an)} +Hi(neTes + Lvnitiy) = 0. (A 17)
For subscript — reverse the signs of Q,, 2,. For subscript 3 omit 2, and £2,.
Equations (A 15)—(A 17) may now be written in matrix form
(AL +iB)c, = (eyw¥E, [eN,w)d. (A 18)
W = Nyt eyme (A 19)

is the square of the angular electron plasma frequency wy, A, is a 5 x 5 diagonal matrix with
elements

Here

w—0 0+Q2, w+80; w+0, o, (A 20)

¢, is the column with elements 7o, 75, 73,, 744, Tny, d is the column with elements 1, —m,/m,,
—me/mg, —my/my, 0 and B is the matrix

- (Vez + Veg + Veq Veo Veg Veq Ven
+ Ven + Veh)
Vae — (Vg + Vg + g Vos Voyq Von
+ Vop + Vap)
V3e Vag — (Vae + Va2 + Vg Vg Van
+ Vg + Vap)
Ve Vyp V3 — (Vge +Vgp + Va3 Van
+Vyn +Vap)

Vne Vng Vng Vng - (Vne +Vna+ Vns

| + Vng + V) |

(A 21)
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Similar equations are obtained for ¢_and ¢;. We may therefore temporarily omit the subscripts.
Now (A 21) is solved by inversion of the square matrix on the left, to give c. If

(A+iB)-t = X +1iY, (A 22)
then we have
X =(A+BAB)-1, Y= —A-BX. (A 23)

The electric polarization P in the medium is a vector given by
P=¢(—Nyro+Nyry+Nyry+ Nyry) = p(€e—1) E. (A 24)

On taking principal axis components with subscript + we get
6, = 1+ (6k/0) (— 1, No/Ney Ny/Noy No/ N, 0) (X, +i¥..)d. (A 25)

Similar results are obtained for subscript — (reverse signs of 2., 2;in (A 20)), and for subscript 3
(omit £2,, 2, in (A 20)).

ArPENDIX B. DIPOLE SOURCE NOT PARALLEL TO
THE CONSTANT MAGNETIC FIELD

The results in this paper are all for a hertzian dipole source parallel to the superimposed
magnetic field B, that is to the z axis. They were derived from the integrals given by (27), in
which the factor g; of the integrand was given by the six expressions (28) for the six field com-
ponents (25). For a dipole source with any other orientation, the same integral (27) can be used
for the field components, but the values of the g; are different. They are now to be given for a
dipole source (a) parallel to the x axis, (B1) and (5) parallel to the y axis (B 2). In all cases the
magnetic field B is parallel to the z axis. The fields for a dipole with any other orientation can
then be found by first resolving the dipole into components parallel to the ¥, y, z axes, and then
using a corresponding combination of (B 1), (B 2) and (28) to get the total fields. It is here
assumed, as was done in the body of the paper, that the coordinates of the receiver are
(x,0,z) = (rsin 3, 0,7cos 3). The superscript (/) on n® is omitted for the reasons given in §4. The
argument £ in the following Bessel functions is given by (26).

Case (a). Dipole source parallel to x axis

The six g; in (27) are

1(n,n,) 7 {ea(€ g —12) — 1 €45 + 35 (n* — €5)} S (§) — Hin, n5 (n® — €5) Jo(€)
i(n,n,) ™" €4, (65— n5) Jo(£)

(n* — €45) J1(€)

i€, {”;1(”/23 —2e3) Jy(£) — ”sz(g)}

—in, {3 (€5 + €4) + €3(13 — €40) }o(£) + in, (€3 — €4) So(£)

n: " 6gy (63— 15) Ji(E)-

(B 1)
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Case (b). Dipole source parallel to y axis
The six g; in (27) are

- (npnz) _lezu(63 - ni)‘lo(g) \
i(np nz) -1 {es(emx - ﬂg) - n/22 €pa Tt %ni(nz - 63)}‘]0(g) + %np nz_l (n2 - €3) J2(€)
- €a:y‘]1(g)

B2
i”;l{%”fz(ea + €:cz) + 63(”2 - exm)}‘]()(g) + %inp(e:, - emz) ‘]2(5) ( )

e, {n;t (nf — 2e5) Jy(€) + n,J(£)}

n;l(nlz)emx+ng€3_e3€xx) Jl(g) ,

Some examples of the use of formulae equivalent to (B 1), (B 2) have been given by Stott
(1982).
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